Guanzheng commited on
Commit
71d09d9
·
verified ·
1 Parent(s): 9be7411

Create configuration_clex.py

Browse files
Files changed (1) hide show
  1. configuration_clex.py +148 -0
configuration_clex.py ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ LLaMA model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+ from transformers import LlamaConfig
25
+
26
+
27
+ logger = logging.get_logger(__name__)
28
+
29
+ LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
30
+
31
+
32
+ class CLEXLlamaConfig(LlamaConfig):
33
+ r"""
34
+ This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
35
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
36
+ defaults will yield a similar configuration to that of the LLaMA-7B.
37
+
38
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
39
+ documentation from [`PretrainedConfig`] for more information.
40
+
41
+
42
+ Args:
43
+ vocab_size (`int`, *optional*, defaults to 32000):
44
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
45
+ `inputs_ids` passed when calling [`LlamaModel`]
46
+ hidden_size (`int`, *optional*, defaults to 4096):
47
+ Dimension of the hidden representations.
48
+ intermediate_size (`int`, *optional*, defaults to 11008):
49
+ Dimension of the MLP representations.
50
+ num_hidden_layers (`int`, *optional*, defaults to 32):
51
+ Number of hidden layers in the Transformer encoder.
52
+ num_attention_heads (`int`, *optional*, defaults to 32):
53
+ Number of attention heads for each attention layer in the Transformer encoder.
54
+ num_key_value_heads (`int`, *optional*):
55
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
56
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
57
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
58
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
59
+ by meanpooling all the original heads within that group. For more details checkout [this
60
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
61
+ `num_attention_heads`.
62
+ pretraining_tp (`int`, *optional*, defaults to `1`):
63
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
64
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
65
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
66
+ issue](https://github.com/pytorch/pytorch/issues/76232).
67
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
68
+ The non-linear activation function (function or string) in the decoder.
69
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
70
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
71
+ just in case (e.g., 512 or 1024 or 2048).
72
+ initializer_range (`float`, *optional*, defaults to 0.02):
73
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
74
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
75
+ The epsilon used by the rms normalization layers.
76
+ use_cache (`bool`, *optional*, defaults to `True`):
77
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
78
+ relevant if `config.is_decoder=True`.
79
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
80
+ Whether to tie weight embeddings
81
+ rope_scaling (`Dict`, *optional*):
82
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports three scaling
83
+ strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
84
+ is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
85
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
86
+ these scaling strategies behave:
87
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
88
+ experimental feature, subject to breaking API changes in future versions.
89
+
90
+ Example:
91
+
92
+ ```python
93
+ >>> from transformers import LlamaModel, LlamaConfig
94
+
95
+ >>> # Initializing a LLaMA llama-7b style configuration
96
+ >>> configuration = LlamaConfig()
97
+
98
+ >>> # Initializing a model from the llama-7b style configuration
99
+ >>> model = LlamaModel(configuration)
100
+
101
+ >>> # Accessing the model configuration
102
+ >>> configuration = model.config
103
+ ```"""
104
+ model_type = "llama"
105
+ keys_to_ignore_at_inference = ["past_key_values"]
106
+
107
+ def __init__(
108
+ self,
109
+ rope_scaling=None,
110
+ use_flashattn=True,
111
+ log_scale=True,
112
+ **kwargs,
113
+ ):
114
+ super().__init__(
115
+ **kwargs,
116
+ )
117
+ self.use_flashattn = use_flashattn
118
+ self.log_scale = log_scale
119
+ self.rope_theta = 10000
120
+ self.max_position_embeddings = 4096
121
+ self.data_length = 4096
122
+ self.rope_scaling = rope_scaling
123
+ self._rope_scaling_validation()
124
+
125
+
126
+ def _rope_scaling_validation(self):
127
+ """
128
+ Validate the `rope_scaling` configuration.
129
+ """
130
+ if self.rope_scaling is None:
131
+ return
132
+
133
+ # if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
134
+ # raise ValueError(
135
+ # "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
136
+ # f"got {self.rope_scaling}"
137
+ # )
138
+ rope_scaling_type = self.rope_scaling.get("type", None)
139
+ rope_scaling_max_factor = self.rope_scaling.get("max_factor", None)
140
+ rope_scaling_param_factor = self.rope_scaling.get("param_factor", None)
141
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic", "clex"]:
142
+ raise ValueError(
143
+ f"`rope_scaling`'s name field must be one of ['linear', 'dynamic', 'clex'], got {rope_scaling_type}"
144
+ )
145
+ # if rope_scaling_max_factor is None or not isinstance(rope_scaling_max_factor, float) or rope_scaling_max_factor <= 1.0:
146
+ # raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_max_factor}")
147
+ # if rope_scaling_param_factor is None or not isinstance(rope_scaling_param_factor, float) or rope_scaling_param_factor <= 1.0:
148
+ # raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_param_factor}")