File size: 8,695 Bytes
cabb4bc
 
69a93c1
 
09471ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cabb4bc
8721983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69a93c1
d2d47d3
69a93c1
e0f398f
8721983
 
 
 
 
 
 
 
 
 
 
14da305
8721983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd7275d
8721983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09471ed
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
---
license: mit
datasets:
- DAMO-NLP-SG/LongCorpus-2.5B
model-index:
- name: CLEX-Mixtral-8x7B-Chat-32K
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 66.38
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=DAMO-NLP-SG/CLEX-Mixtral-8x7B-Chat-32K
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 86.48
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=DAMO-NLP-SG/CLEX-Mixtral-8x7B-Chat-32K
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 70.12
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=DAMO-NLP-SG/CLEX-Mixtral-8x7B-Chat-32K
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 56.47
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=DAMO-NLP-SG/CLEX-Mixtral-8x7B-Chat-32K
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 82.56
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=DAMO-NLP-SG/CLEX-Mixtral-8x7B-Chat-32K
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 50.49
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=DAMO-NLP-SG/CLEX-Mixtral-8x7B-Chat-32K
      name: Open LLM Leaderboard
---

# CLEX: Continuous Length Extrapolation for Large Language Models
This repo stores the checkpoint of CLEX-Mixtral-8x7B-Chat-32K.


## Features and Highlights of CLEX
![CLEX_diagram](https://github.com/DAMO-NLP-SG/CLEX/assets/18526640/063ffe34-0116-4759-92bf-e22fc7264cdf)

- **Simple and Clear**: _MINIMAL_ code and architecture changes. Only one up-and-down projection layer introduced, _NO_ recurrent memory caching or sparse attention required.
- **Train Short, Test Long**: _NO_ performance drop on the sequences _4x~8x longer_ than the training ones (see [here](https://github.com/DAMO-NLP-SG/CLEX#language-modelling)). 
- **Continuous Length Extrapolation**: Explicitly modeling the continuous dynamics of context window size during length extrapolation.

If you have any questions, feel free to contact us. (Emails: guanzzh.chen@gmail.com, lixin4ever@gmail.com)

## Model Zoo
<div align="center">

| Model Name | Model Type | Starting Point | Train Data |Train Length | MAX Test Length | HF Repo |
|:-----|:-----|:-----------|:-----------|:-----------|:-----------|:------:|
| CLEX-LLaMA-2-7B-16K | base | LLaMA-2-7B | [Redpajama-Book](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) | 16K | 64K | [link](https://huggingface.co/DAMO-NLP-SG/CLEX-7B-16K) |
| CLEX-LLaMA-2-7B-Chat-16K | chat | CLEX-7B-16K | [UltraChat](https://github.com/thunlp/UltraChat) | 16K | 64K | [link](https://huggingface.co/DAMO-NLP-SG/CLEX-7B-Chat-16K) |
| CLEX-LLaMA-2-7B-64K | base | LLaMA-2-7B | [Redpajama-Book](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) | 64k | 256K | [link](https://huggingface.co/DAMO-NLP-SG/CLEX-LLaMA-2-7B-64K) |
| CLEX-Phi-2-32K | base | Phi-2-2.7B | [LongCorpus-2.5B](https://huggingface.co/datasets/DAMO-NLP-SG/LongCorpus-2.5B) | 32k | 128K | [link](https://huggingface.co/DAMO-NLP-SG/CLEX-Phi-2-32K) |
| CLEX-Mixtral-8x7B-32K | base | Mixtral-8x7B-v0.1 | [LongCorpus-2.5B](https://huggingface.co/datasets/DAMO-NLP-SG/LongCorpus-2.5B) | 32k | >128K | [link](https://huggingface.co/DAMO-NLP-SG/CLEX-Mixtral-8x7B-32K) |
| **CLEX-Mixtral-8x7B-Chat-32k** (this checkpoint) | chat | CLEX-Mixtral-8x7B-32K | [Ultrachat 200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) | 32k | >128K | [link](https://huggingface.co/DAMO-NLP-SG/CLEX-Mixtral-8x7B-Chat-32K) |
</div>


## Usage


```bash
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("DAMO-NLP-SG/CLEX-Mixtral-8x7B-Chat-32K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("DAMO-NLP-SG/CLEX-Mixtral-8x7B-Chat-32K", torch_dtype=torch.bfloat16, trust_remote_code=True)
inputs = tokenizer("What is CLEX?", return_tensors="pt")
sample = model.generate(**inputs, max_length=128)
print(tokenizer.decode(sample[0]))
```




## Evaluation


## InfiniteBench
We also evaluate CLEX-Mixtral-8x7B-Chat-32k on [InfiniteBench](https://github.com/OpenBMB/InfiniteBench), which is a 128k-length benchmark covering various tasks. We compare our CLEX-Mixtral-8x7B-Chat-32k with GPT-4, Claude, KimiChat, and vanilla Mixtral-8x7B.

| Task Name           | GPT-4  | YaRN-Mistral-7B | Kimi-Chat | Claude 2 | CLEX-Mixtral-8x7B-Chat-32k | Mixtral-8x7B-Instruct-v0.1 |
| ------------------- | ------ | --------------- | --------- | -------- | -------------------------- | -------------------------- |
| Retrieve.PassKey    | 100%   | 92.71%          | 98.14%    | 97.80%   | 99.72%                     | 96.78%                     |
| **Retrieve.Number** | 100%   | 56.61%          | 95.42%    | 98.14%   | 76.10%                     | 76.61%                     |
| **Retrieve.KV**     | 89.00% | < 5%            | 53.60%    | 65.40%   | <5%                        | <5%                        |
| En.Sum              | 14.73% | 9.09%           | 17.93%    | 14.45%   | 15.48%                     | 14.3%                      |
| En.QA               | 22.22% | 9.55%           | 16.52%    | 11.97%   | 15.52%                     | 16.81%                     |
| En.MC               | 67.25% | 27.95%          | 72.49%    | 62.88%   | 58.96%                     | 56.77%                     |
| En.Dia              | 8.50%  | 7.50%           | 11.50%    | 46.50%   | 9%                         | <5%                        |
| Code.Debug          | 39.59% | < 5%            | 18.02%    | < 5%     | 21.32%                     | <5%                        |
| Code.Run            | 23.25% | < 5%            | < 5%      | < 5%     | < 5%                       | <5%                        |
| Math.Calc           | < 5%   | < 5%            | < 5%      | < 5%     | < 5%                       | <5%                        |
| Math.Find           | 60.00% | 17.14%          | 12.57%    | 32.29%   | 28%                        | 26.57%                     |



## Citation
If you find our project useful, hope you can star our repo and cite our paper as follows:
```
@article{damonlpsg2023clex,
  author = {Chen, Guanzheng and Li, Xin and Meng, Zaiqiao and Liang, Shangsong and Bing, Lidong},
  title = {CLEX: Continuous Length Extrapolation for Large Language Models},
  year = 2023,
  journal = {arXiv preprint arXiv:2310.16450},
  url = {https://arxiv.org/abs/2310.16450}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_DAMO-NLP-SG__CLEX-Mixtral-8x7B-Chat-32K)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |68.75|
|AI2 Reasoning Challenge (25-Shot)|66.38|
|HellaSwag (10-Shot)              |86.48|
|MMLU (5-Shot)                    |70.12|
|TruthfulQA (0-shot)              |56.47|
|Winogrande (5-shot)              |82.56|
|GSM8k (5-shot)                   |50.49|