Upload urmbertmodel.ipynb
Browse files- urmbertmodel.ipynb +191 -0
urmbertmodel.ipynb
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 5,
|
6 |
+
"id": "c6866894",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import warnings\n",
|
11 |
+
"warnings.filterwarnings(\"ignore\")"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": 16,
|
17 |
+
"id": "7b293125",
|
18 |
+
"metadata": {
|
19 |
+
"scrolled": false
|
20 |
+
},
|
21 |
+
"outputs": [
|
22 |
+
{
|
23 |
+
"name": "stderr",
|
24 |
+
"output_type": "stream",
|
25 |
+
"text": [
|
26 |
+
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-multilingual-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']\n",
|
27 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"data": {
|
32 |
+
"application/vnd.jupyter.widget-view+json": {
|
33 |
+
"model_id": "1ddac164d1df40438dddfddf1730f471",
|
34 |
+
"version_major": 2,
|
35 |
+
"version_minor": 0
|
36 |
+
},
|
37 |
+
"text/plain": [
|
38 |
+
"Map: 0%| | 0/2312 [00:00<?, ? examples/s]"
|
39 |
+
]
|
40 |
+
},
|
41 |
+
"metadata": {},
|
42 |
+
"output_type": "display_data"
|
43 |
+
}
|
44 |
+
],
|
45 |
+
"source": [
|
46 |
+
"import pandas as pd\n",
|
47 |
+
"from transformers import BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments\n",
|
48 |
+
"from datasets import Dataset, DatasetDict\n",
|
49 |
+
"import torch\n",
|
50 |
+
"\n",
|
51 |
+
"# Load dataset\n",
|
52 |
+
"data = pd.read_csv('C:/Users/Administrator/Downloads/ds_2300_Sheet1.csv')\n",
|
53 |
+
"\n",
|
54 |
+
"# Remove 'id' column\n",
|
55 |
+
"data = data.drop(columns=['id'])\n",
|
56 |
+
"\n",
|
57 |
+
"# Adding a dummy label column (ensure it's an integer type)\n",
|
58 |
+
"data['label'] = 0\n",
|
59 |
+
"\n",
|
60 |
+
"# Convert label column to integer type\n",
|
61 |
+
"data['label'] = data['label'].astype(float)\n",
|
62 |
+
"\n",
|
63 |
+
"# Convert to Hugging Face dataset\n",
|
64 |
+
"dataset = Dataset.from_pandas(data)\n",
|
65 |
+
"\n",
|
66 |
+
"# Loading pre-trained uncased multilingual BERT model and tokenizer\n",
|
67 |
+
"model_name = 'bert-base-multilingual-uncased'\n",
|
68 |
+
"tokenizer = BertTokenizer.from_pretrained(model_name)\n",
|
69 |
+
"model = BertForSequenceClassification.from_pretrained(model_name, num_labels=1) # Adjust num_labels if needed\n",
|
70 |
+
"\n",
|
71 |
+
"# Tokenization function\n",
|
72 |
+
"def tokenize_function(examples):\n",
|
73 |
+
" return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=512) # Adjust max_length if needed\n",
|
74 |
+
"\n",
|
75 |
+
"# Tokenize the dataset\n",
|
76 |
+
"tokenized_datasets = dataset.map(tokenize_function, batched=True)\n",
|
77 |
+
"\n",
|
78 |
+
"# Split the dataset\n",
|
79 |
+
"split_datasets = tokenized_datasets.train_test_split(test_size=0.1)\n",
|
80 |
+
"train_dataset = split_datasets['train']\n",
|
81 |
+
"eval_dataset = split_datasets['test']\n",
|
82 |
+
"\n",
|
83 |
+
"# Convert train and eval datasets to PyTorch tensors and ensure labels are Long tensors\n",
|
84 |
+
"def format_dataset(dataset):\n",
|
85 |
+
" return dataset.with_format('torch', columns=['input_ids', 'attention_mask', 'label'])\n",
|
86 |
+
"\n",
|
87 |
+
"train_dataset = format_dataset(train_dataset)\n",
|
88 |
+
"eval_dataset = format_dataset(eval_dataset)\n",
|
89 |
+
"\n",
|
90 |
+
"# Define training arguments\n",
|
91 |
+
"training_args = TrainingArguments(\n",
|
92 |
+
" output_dir='./results',\n",
|
93 |
+
" evaluation_strategy='epoch',\n",
|
94 |
+
" learning_rate=2e-5,\n",
|
95 |
+
" per_device_train_batch_size=8,\n",
|
96 |
+
" per_device_eval_batch_size=8,\n",
|
97 |
+
" num_train_epochs=5,\n",
|
98 |
+
" weight_decay=0.01,\n",
|
99 |
+
")\n",
|
100 |
+
"\n",
|
101 |
+
"# Define Trainer\n",
|
102 |
+
"trainer = Trainer(\n",
|
103 |
+
" model=model,\n",
|
104 |
+
" args=training_args,\n",
|
105 |
+
" train_dataset=train_dataset,\n",
|
106 |
+
" eval_dataset=eval_dataset,\n",
|
107 |
+
" tokenizer=tokenizer,\n",
|
108 |
+
")"
|
109 |
+
]
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"cell_type": "code",
|
113 |
+
"execution_count": null,
|
114 |
+
"id": "2d533c43",
|
115 |
+
"metadata": {
|
116 |
+
"scrolled": true
|
117 |
+
},
|
118 |
+
"outputs": [
|
119 |
+
{
|
120 |
+
"data": {
|
121 |
+
"text/html": [
|
122 |
+
"\n",
|
123 |
+
" <div>\n",
|
124 |
+
" \n",
|
125 |
+
" <progress value='187' max='1300' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
126 |
+
" [ 187/1300 17:25 < 1:44:52, 0.18 it/s, Epoch 0.72/5]\n",
|
127 |
+
" </div>\n",
|
128 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
129 |
+
" <thead>\n",
|
130 |
+
" <tr style=\"text-align: left;\">\n",
|
131 |
+
" <th>Epoch</th>\n",
|
132 |
+
" <th>Training Loss</th>\n",
|
133 |
+
" <th>Validation Loss</th>\n",
|
134 |
+
" </tr>\n",
|
135 |
+
" </thead>\n",
|
136 |
+
" <tbody>\n",
|
137 |
+
" </tbody>\n",
|
138 |
+
"</table><p>"
|
139 |
+
],
|
140 |
+
"text/plain": [
|
141 |
+
"<IPython.core.display.HTML object>"
|
142 |
+
]
|
143 |
+
},
|
144 |
+
"metadata": {},
|
145 |
+
"output_type": "display_data"
|
146 |
+
}
|
147 |
+
],
|
148 |
+
"source": [
|
149 |
+
"# Train the model\n",
|
150 |
+
"trainer.train()\n"
|
151 |
+
]
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"cell_type": "code",
|
155 |
+
"execution_count": null,
|
156 |
+
"id": "3ca0b7d2",
|
157 |
+
"metadata": {},
|
158 |
+
"outputs": [],
|
159 |
+
"source": [
|
160 |
+
"# Evaluate the model\n",
|
161 |
+
"eval_results = trainer.evaluate()\n",
|
162 |
+
"print(\"Evaluation Results:\", eval_results)\n",
|
163 |
+
"\n",
|
164 |
+
"# Save the model\n",
|
165 |
+
"model.save_pretrained('./fine-tuned-bert-urdu')\n",
|
166 |
+
"tokenizer.save_pretrained('./fine-tuned-bert-urdu')"
|
167 |
+
]
|
168 |
+
}
|
169 |
+
],
|
170 |
+
"metadata": {
|
171 |
+
"kernelspec": {
|
172 |
+
"display_name": "Python 3 (ipykernel)",
|
173 |
+
"language": "python",
|
174 |
+
"name": "python3"
|
175 |
+
},
|
176 |
+
"language_info": {
|
177 |
+
"codemirror_mode": {
|
178 |
+
"name": "ipython",
|
179 |
+
"version": 3
|
180 |
+
},
|
181 |
+
"file_extension": ".py",
|
182 |
+
"mimetype": "text/x-python",
|
183 |
+
"name": "python",
|
184 |
+
"nbconvert_exporter": "python",
|
185 |
+
"pygments_lexer": "ipython3",
|
186 |
+
"version": "3.11.5"
|
187 |
+
}
|
188 |
+
},
|
189 |
+
"nbformat": 4,
|
190 |
+
"nbformat_minor": 5
|
191 |
+
}
|