Dmeta-embedding-zh / mteb_eval_openai.py
xiaowenbin's picture
Upload mteb_eval_openai.py
2954620 verified
raw
history blame
6.08 kB
import os
import sys
import time
import hashlib
import numpy as np
import requests
import logging
import functools
import tiktoken
from tqdm import tqdm
from mteb import MTEB
#from sentence_transformers import SentenceTransformer
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("main")
all_task_list = ['Classification', 'Clustering', 'Reranking', 'Retrieval', 'STS', 'PairClassification']
if len(sys.argv) > 1:
task_list = [t for t in sys.argv[1].split(',') if t in all_task_list]
else:
task_list = all_task_list
OPENAI_BASE_URL = os.environ.get('OPENAI_BASE_URL', '')
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY', '')
EMB_CACHE_DIR = os.environ.get('EMB_CACHE_DIR', '.cache/embs')
REQ_OPENAI_TIMEOUT = int(os.environ.get('REQ_OPENAI_TIMEOUT', 120))
REQ_OPENAI_RETRY = int(os.environ.get('REQ_OPENAI_RETRY', 3))
REQ_OPENAI_INTERVAL = int(os.environ.get('REQ_OPENAI_INTERVAL', 60))
os.makedirs(EMB_CACHE_DIR, exist_ok=True)
def log(*args):
print(*args, file=sys.stderr)
def uuid_for_text(text):
return hashlib.md5(text.encode('utf8')).hexdigest()
def count_openai_tokens(text, model="text-embedding-3-large"):
encoding = tiktoken.get_encoding("cl100k_base")
#encoding = tiktoken.encoding_for_model(model)
input_ids = encoding.encode(text)
return len(input_ids)
def request_openai_emb(texts, model="text-embedding-3-large",
base_url='https://api.openai.com', prefix_url='/v1/embeddings',
timeout=4, retry=3, interval=2, caching=True):
if isinstance(texts, str):
texts = [texts]
data = []
if caching:
for text in texts:
emb_file = f"{EMB_CACHE_DIR}/{uuid_for_text(text)}"
if os.path.isfile(emb_file) and os.path.getsize(emb_file) > 0:
data.append(np.loadtxt(emb_file))
if len(texts) == len(data):
return data
url = f"{OPENAI_BASE_URL}{prefix_url}" if OPENAI_BASE_URL else f"{base_url}{prefix_url}"
headers = {
"Authorization": f"Bearer {OPENAI_API_KEY}",
"Content-Type": "application/json"
}
payload = {"input": texts, "model": model}
data = []
while retry > 0 and len(data) == 0:
try:
r = requests.post(url, headers=headers, json=payload,
timeout=timeout)
res = r.json()
for x in res["data"]:
data.append(np.array(x["embedding"]))
except Exception as e:
log(f"request openai, retry {retry}, error: {e}")
time.sleep(interval)
retry -= 1
if len(data) != len(texts):
log(f"request openai, failed, texts and embs DONT match!")
return []
if caching and len(data) > 0:
for text, emb in zip(texts, data):
emb_file = f"{EMB_CACHE_DIR}/{uuid_for_text(text)}"
np.savetxt(emb_file, emb)
return data
class OpenaiEmbModel:
def __init__(self, model_name, model_dim, *args, **kwargs):
super().__init__(*args, **kwargs)
self.model_name = model_name
self.model_dim = model_dim
def encode(self, sentences, batch_size=32, **kwargs):
i = 0
max_tokens = kwargs.get("max_tokens", 8000)
batch_tokens = 0
batch = []
batch_list = []
while i < len(sentences):
num_tokens = count_openai_tokens(sentences[i],
model=self.model_name)
if batch_tokens+num_tokens > max_tokens:
if batch:
batch_list.append(batch)
if num_tokens > max_tokens:
batch = [sentences[i][:2048]]
batch_tokens = count_openai_tokens(sentences[i][:2048],
model=self.model_name)
else:
batch = [sentences[i]]
batch_tokens = num_tokens
else:
batch_list.append([sentences[i][:2048]])
else:
batch.append(sentences[i])
batch_tokens += num_tokens
i += 1
if batch:
batch_list.append(batch)
#batch_size = min(64, batch_size)
#
#for i in range(0, len(sentences), batch_size):
# batch_texts = sentences[i:i+batch_size]
# batch_list.append(batch_texts)
log(f"Total sentences={len(sentences)}, batches={len(batch_list)}")
embs = []
waiting = 0
for batch_idx, batch_texts in enumerate(tqdm(batch_list)):
batch_embs = request_openai_emb(batch_texts, model=self.model_name,
caching=kwargs.get("caching", True),
timeout=kwargs.get("timeout", REQ_OPENAI_TIMEOUT),
retry=kwargs.get("retry", REQ_OPENAI_RETRY),
interval=kwargs.get("interval", REQ_OPENAI_INTERVAL))
if len(batch_texts) == len(batch_embs):
embs.extend(batch_embs)
waiting = waiting // 2
log(f"The batch-{batch_idx} encoding SUCCESS! waiting={waiting}s...")
else:
embs.extend([np.array([0.0 for j in range(self.model_dim)]) for i in range(len(batch_texts))])
waiting = 120 if waiting <= 0 else waiting+120
log(f"The batch-{batch_idx} encoding FAILED {len(batch_texts)}:{len(batch_embs)}! waiting={waiting}s...")
if waiting > 3600:
log(f"Frequently failed, should be waiting more then 3600s, break down!!!")
break
if waiting > 0:
time.sleep(waiting)
print(f'Total encoding sentences={len(sentences)}, embeddings={len(embs)}')
return embs
model_name = "text-embedding-3-large"
model_dim = 3072
model = OpenaiEmbModel(model_name, model_dim)
######
# test
#####
#embs = model.encode(['全国', '北京'])
#print(embs)
#exit()
# languages
task_langs=["zh", "zh-CN"]
evaluation = MTEB(task_types=task_list, task_langs=task_langs)
evaluation.run(model, output_folder=f"results/zh/{model_name.split('/')[-1]}")