import logging import functools from mteb import MTEB from sentence_transformers import SentenceTransformer logging.basicConfig(level=logging.INFO) logger = logging.getLogger("main") # task_list task_list = ['Classification', 'Clustering', 'Reranking', 'Retrieval', 'STS', 'PairClassification'] # languages task_langs=["zh", "zh-CN"] model_name = "DMetaSoul/Dmeta-embedding" model = SentenceTransformer(model_name) # normalize_embeddings should be true for this model model.encode = functools.partial(model.encode, normalize_embeddings=True) evaluation = MTEB(task_types=task_list, task_langs=task_langs) evaluation.run(model, output_folder=f"results/zh/{model_name.split('/')[-1]}")