Tagged_Uni_500v9_NER_Model_3Epochs_AUGMENTED
This model is a fine-tuned version of bert-base-cased on the tagged_uni500v9_wikigold_split dataset. It achieves the following results on the evaluation set:
- Loss: 0.2209
- Precision: 0.7117
- Recall: 0.7177
- F1: 0.7146
- Accuracy: 0.9351
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 165 | 0.2693 | 0.5953 | 0.5249 | 0.5579 | 0.9126 |
No log | 2.0 | 330 | 0.2203 | 0.6916 | 0.6853 | 0.6884 | 0.9313 |
No log | 3.0 | 495 | 0.2209 | 0.7117 | 0.7177 | 0.7146 | 0.9351 |
Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 2.4.0
- Tokenizers 0.11.6
- Downloads last month
- 108
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Evaluation results
- Precision on tagged_uni500v9_wikigold_splitself-reported0.712
- Recall on tagged_uni500v9_wikigold_splitself-reported0.718
- F1 on tagged_uni500v9_wikigold_splitself-reported0.715
- Accuracy on tagged_uni500v9_wikigold_splitself-reported0.935