--- language: nl license: mit datasets: - dbrd model-index: - name: robbert-v2-dutch-sentiment Copied results: - task: type: text-classification name: Text Classification dataset: name: dbrd type: sentiment-analysis split: test metrics: - name: Accuracy type: accuracy value: 0.93325 widget: - text: "Ik erken dat dit een boek is, daarmee is alles gezegd." - text: "Prachtig verhaal, heel mooi verteld en een verrassend einde... Een topper!" thumbnail: "https://github.com/iPieter/RobBERT/raw/master/res/robbert_logo.png" tags: - Dutch - Flemish - RoBERTa - RobBERT ---
# RobBERT finetuned for sentiment analysis on DBRD This is a finetuned model based on [RobBERT (v2)](https://huggingface.co/pdelobelle/robbert-v2-dutch-base). We used [DBRD](https://huggingface.co/datasets/dbrd), which consists of book reviews from [hebban.nl](hebban.nl). Hence our example sentences about books. We did some limited experiments to test if this also works for other domains, but this was not # Training data and setup We used the [Dutch Book Reviews Dataset (DBRD)](https://huggingface.co/datasets/dbrd) from van der Burgh et al. (2019). Originally, these reviews got a five-star rating, but this has been converted to positive (⭐️⭐️⭐️⭐️ and ⭐️⭐️⭐️⭐️⭐️), neutral (⭐️⭐️⭐️) and negative (⭐️ and ⭐️⭐️). We used 19.5k reviews for the training set, 528 reviews for the validation set and 2224 to calculate the final accuracy. The validation set was used to evaluate a random hyperparameter search over the learning rate, weight decay and gradient accumulation steps. The full training details are available in [`training_args.bin`](https://huggingface.co/DTAI-KULeuven/robbert-v2-dutch-sentiment/blob/main/training_args.bin) as a binary PyTorch file. # Limitations and biases - The domain of the reviews is limited to book reviews. - Most authors of the book reviews were women, which could have caused [a difference in performance for reviews written by men and women](https://www.aclweb.org/anthology/2020.findings-emnlp.292). ## Credits and citation This project is created by [Pieter Delobelle](https://people.cs.kuleuven.be/~pieter.delobelle), [Thomas Winters](https://thomaswinters.be) and [Bettina Berendt](https://people.cs.kuleuven.be/~bettina.berendt/). If you would like to cite our paper or models, you can use the following BibTeX: ``` @inproceedings{delobelle2020robbert, title = "{R}ob{BERT}: a {D}utch {R}o{BERT}a-based {L}anguage {M}odel", author = "Delobelle, Pieter and Winters, Thomas and Berendt, Bettina", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.292", doi = "10.18653/v1/2020.findings-emnlp.292", pages = "3255--3265" } ```