DTang161 commited on
Commit
b472176
·
verified ·
1 Parent(s): 23c121b

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: huggyllama/llama-7b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "huggyllama/llama-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "v_proj",
25
+ "o_proj",
26
+ "q_proj"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99d1397ed0e09fd3bf0d3a9d764007d51a78ecadc102dd19e58bfb90ac1eaa0c
3
+ size 67143296
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c3e81e1f9741e5c7ed208545cff646d9b798121b454d0fabdd915a0d992934c
3
+ size 134433530
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15faab3eb59b0a5c7c0f9493cf667c02be1916c56d8b4ff90c5097fef25a1a35
3
+ size 14448
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e847599b94aa2e03efe787caaf6122715d1e24f858a64970a35af2776463a622
3
+ size 14448
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a48753fd8bbe1a340cdf0d0ac5d9abda1a8c458b8d7c516b31575edf2cdd0346
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": true,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% elif false == true and not '<<SYS>>' in messages[0]['content'] %}{% set loop_messages = messages %}{% set system_message = 'You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\\n\\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don\\'t know the answer to a question, please don\\'t share false information.' %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'system' %}{{ '<<SYS>>\\n' + content.strip() + '\\n<</SYS>>\\n\\n' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "model_max_length": 2048,
37
+ "pad_token": "</s>",
38
+ "sp_model_kwargs": {},
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false
42
+ }
trainer_state.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.73760986328125,
3
+ "best_model_checkpoint": "llama1_tulu/checkpoint-1000",
4
+ "epoch": 0.022898490989443795,
5
+ "eval_steps": 50,
6
+ "global_step": 1000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0005724622747360949,
13
+ "grad_norm": 0.10404147207736969,
14
+ "learning_rate": 9.999999987062407e-05,
15
+ "loss": 1.3507,
16
+ "step": 25
17
+ },
18
+ {
19
+ "epoch": 0.0011449245494721898,
20
+ "grad_norm": 0.11046535521745682,
21
+ "learning_rate": 9.99999994824963e-05,
22
+ "loss": 1.2554,
23
+ "step": 50
24
+ },
25
+ {
26
+ "epoch": 0.0011449245494721898,
27
+ "eval_loss": 1.8154208660125732,
28
+ "eval_runtime": 102.1863,
29
+ "eval_samples_per_second": 3.366,
30
+ "eval_steps_per_second": 0.842,
31
+ "step": 50
32
+ },
33
+ {
34
+ "epoch": 0.0017173868242082847,
35
+ "grad_norm": 0.11035406589508057,
36
+ "learning_rate": 9.999999883561665e-05,
37
+ "loss": 1.1389,
38
+ "step": 75
39
+ },
40
+ {
41
+ "epoch": 0.0022898490989443797,
42
+ "grad_norm": 0.11297386139631271,
43
+ "learning_rate": 9.999999792998515e-05,
44
+ "loss": 1.1202,
45
+ "step": 100
46
+ },
47
+ {
48
+ "epoch": 0.0022898490989443797,
49
+ "eval_loss": 1.7999786138534546,
50
+ "eval_runtime": 102.0838,
51
+ "eval_samples_per_second": 3.37,
52
+ "eval_steps_per_second": 0.842,
53
+ "step": 100
54
+ },
55
+ {
56
+ "epoch": 0.0028623113736804743,
57
+ "grad_norm": 0.10161859542131424,
58
+ "learning_rate": 9.999999676560182e-05,
59
+ "loss": 1.1236,
60
+ "step": 125
61
+ },
62
+ {
63
+ "epoch": 0.0034347736484165695,
64
+ "grad_norm": 0.1069190576672554,
65
+ "learning_rate": 9.999999534246664e-05,
66
+ "loss": 1.1939,
67
+ "step": 150
68
+ },
69
+ {
70
+ "epoch": 0.0034347736484165695,
71
+ "eval_loss": 1.7855536937713623,
72
+ "eval_runtime": 102.0371,
73
+ "eval_samples_per_second": 3.371,
74
+ "eval_steps_per_second": 0.843,
75
+ "step": 150
76
+ },
77
+ {
78
+ "epoch": 0.004007235923152664,
79
+ "grad_norm": 0.11253707855939865,
80
+ "learning_rate": 9.999999366057963e-05,
81
+ "loss": 1.0961,
82
+ "step": 175
83
+ },
84
+ {
85
+ "epoch": 0.004579698197888759,
86
+ "grad_norm": 0.12033475935459137,
87
+ "learning_rate": 9.999999171994079e-05,
88
+ "loss": 1.0771,
89
+ "step": 200
90
+ },
91
+ {
92
+ "epoch": 0.004579698197888759,
93
+ "eval_loss": 1.7753245830535889,
94
+ "eval_runtime": 101.9755,
95
+ "eval_samples_per_second": 3.373,
96
+ "eval_steps_per_second": 0.843,
97
+ "step": 200
98
+ },
99
+ {
100
+ "epoch": 0.005152160472624854,
101
+ "grad_norm": 0.11697788536548615,
102
+ "learning_rate": 9.999998952055014e-05,
103
+ "loss": 1.1348,
104
+ "step": 225
105
+ },
106
+ {
107
+ "epoch": 0.005724622747360949,
108
+ "grad_norm": 0.12497353553771973,
109
+ "learning_rate": 9.999998706240768e-05,
110
+ "loss": 1.056,
111
+ "step": 250
112
+ },
113
+ {
114
+ "epoch": 0.005724622747360949,
115
+ "eval_loss": 1.7718411684036255,
116
+ "eval_runtime": 102.0367,
117
+ "eval_samples_per_second": 3.371,
118
+ "eval_steps_per_second": 0.843,
119
+ "step": 250
120
+ },
121
+ {
122
+ "epoch": 0.006297085022097044,
123
+ "grad_norm": 0.11609050631523132,
124
+ "learning_rate": 9.999998434551343e-05,
125
+ "loss": 1.073,
126
+ "step": 275
127
+ },
128
+ {
129
+ "epoch": 0.006869547296833139,
130
+ "grad_norm": 0.11681816726922989,
131
+ "learning_rate": 9.999998136986741e-05,
132
+ "loss": 1.0973,
133
+ "step": 300
134
+ },
135
+ {
136
+ "epoch": 0.006869547296833139,
137
+ "eval_loss": 1.7644453048706055,
138
+ "eval_runtime": 102.0454,
139
+ "eval_samples_per_second": 3.371,
140
+ "eval_steps_per_second": 0.843,
141
+ "step": 300
142
+ },
143
+ {
144
+ "epoch": 0.007442009571569233,
145
+ "grad_norm": 0.11106009781360626,
146
+ "learning_rate": 9.999997813546964e-05,
147
+ "loss": 1.13,
148
+ "step": 325
149
+ },
150
+ {
151
+ "epoch": 0.008014471846305328,
152
+ "grad_norm": 0.1393062323331833,
153
+ "learning_rate": 9.99999746423201e-05,
154
+ "loss": 1.123,
155
+ "step": 350
156
+ },
157
+ {
158
+ "epoch": 0.008014471846305328,
159
+ "eval_loss": 1.761202096939087,
160
+ "eval_runtime": 102.036,
161
+ "eval_samples_per_second": 3.371,
162
+ "eval_steps_per_second": 0.843,
163
+ "step": 350
164
+ },
165
+ {
166
+ "epoch": 0.008586934121041423,
167
+ "grad_norm": 0.12432042509317398,
168
+ "learning_rate": 9.999997089041886e-05,
169
+ "loss": 1.0873,
170
+ "step": 375
171
+ },
172
+ {
173
+ "epoch": 0.009159396395777519,
174
+ "grad_norm": 0.1305975466966629,
175
+ "learning_rate": 9.99999668797659e-05,
176
+ "loss": 1.1353,
177
+ "step": 400
178
+ },
179
+ {
180
+ "epoch": 0.009159396395777519,
181
+ "eval_loss": 1.7591553926467896,
182
+ "eval_runtime": 102.0296,
183
+ "eval_samples_per_second": 3.372,
184
+ "eval_steps_per_second": 0.843,
185
+ "step": 400
186
+ },
187
+ {
188
+ "epoch": 0.009731858670513613,
189
+ "grad_norm": 0.12983490526676178,
190
+ "learning_rate": 9.999996261036124e-05,
191
+ "loss": 1.07,
192
+ "step": 425
193
+ },
194
+ {
195
+ "epoch": 0.010304320945249709,
196
+ "grad_norm": 0.17642855644226074,
197
+ "learning_rate": 9.999995808220494e-05,
198
+ "loss": 1.1013,
199
+ "step": 450
200
+ },
201
+ {
202
+ "epoch": 0.010304320945249709,
203
+ "eval_loss": 1.755958080291748,
204
+ "eval_runtime": 102.0458,
205
+ "eval_samples_per_second": 3.371,
206
+ "eval_steps_per_second": 0.843,
207
+ "step": 450
208
+ },
209
+ {
210
+ "epoch": 0.010876783219985803,
211
+ "grad_norm": 0.12165415287017822,
212
+ "learning_rate": 9.999995329529699e-05,
213
+ "loss": 1.1097,
214
+ "step": 475
215
+ },
216
+ {
217
+ "epoch": 0.011449245494721897,
218
+ "grad_norm": 0.11310654133558273,
219
+ "learning_rate": 9.999994824963741e-05,
220
+ "loss": 1.1508,
221
+ "step": 500
222
+ },
223
+ {
224
+ "epoch": 0.011449245494721897,
225
+ "eval_loss": 1.7511167526245117,
226
+ "eval_runtime": 101.9967,
227
+ "eval_samples_per_second": 3.373,
228
+ "eval_steps_per_second": 0.843,
229
+ "step": 500
230
+ },
231
+ {
232
+ "epoch": 0.012021707769457993,
233
+ "grad_norm": 0.17074422538280487,
234
+ "learning_rate": 9.999994294522626e-05,
235
+ "loss": 1.1356,
236
+ "step": 525
237
+ },
238
+ {
239
+ "epoch": 0.012594170044194088,
240
+ "grad_norm": 0.1229158341884613,
241
+ "learning_rate": 9.999993738206355e-05,
242
+ "loss": 1.0999,
243
+ "step": 550
244
+ },
245
+ {
246
+ "epoch": 0.012594170044194088,
247
+ "eval_loss": 1.749185562133789,
248
+ "eval_runtime": 101.987,
249
+ "eval_samples_per_second": 3.373,
250
+ "eval_steps_per_second": 0.843,
251
+ "step": 550
252
+ },
253
+ {
254
+ "epoch": 0.013166632318930182,
255
+ "grad_norm": 0.12460367381572723,
256
+ "learning_rate": 9.999993156014928e-05,
257
+ "loss": 1.0082,
258
+ "step": 575
259
+ },
260
+ {
261
+ "epoch": 0.013739094593666278,
262
+ "grad_norm": 0.14539870619773865,
263
+ "learning_rate": 9.999992547948354e-05,
264
+ "loss": 1.1011,
265
+ "step": 600
266
+ },
267
+ {
268
+ "epoch": 0.013739094593666278,
269
+ "eval_loss": 1.7477221488952637,
270
+ "eval_runtime": 102.0167,
271
+ "eval_samples_per_second": 3.372,
272
+ "eval_steps_per_second": 0.843,
273
+ "step": 600
274
+ },
275
+ {
276
+ "epoch": 0.014311556868402372,
277
+ "grad_norm": 0.1316772848367691,
278
+ "learning_rate": 9.99999191400663e-05,
279
+ "loss": 1.1296,
280
+ "step": 625
281
+ },
282
+ {
283
+ "epoch": 0.014884019143138466,
284
+ "grad_norm": 0.12940636277198792,
285
+ "learning_rate": 9.999991254189764e-05,
286
+ "loss": 1.0833,
287
+ "step": 650
288
+ },
289
+ {
290
+ "epoch": 0.014884019143138466,
291
+ "eval_loss": 1.7449394464492798,
292
+ "eval_runtime": 102.0245,
293
+ "eval_samples_per_second": 3.372,
294
+ "eval_steps_per_second": 0.843,
295
+ "step": 650
296
+ },
297
+ {
298
+ "epoch": 0.015456481417874562,
299
+ "grad_norm": 0.1443217247724533,
300
+ "learning_rate": 9.999990568497757e-05,
301
+ "loss": 1.1639,
302
+ "step": 675
303
+ },
304
+ {
305
+ "epoch": 0.016028943692610657,
306
+ "grad_norm": 0.14050771296024323,
307
+ "learning_rate": 9.999989856930612e-05,
308
+ "loss": 1.0887,
309
+ "step": 700
310
+ },
311
+ {
312
+ "epoch": 0.016028943692610657,
313
+ "eval_loss": 1.743811011314392,
314
+ "eval_runtime": 102.0028,
315
+ "eval_samples_per_second": 3.372,
316
+ "eval_steps_per_second": 0.843,
317
+ "step": 700
318
+ },
319
+ {
320
+ "epoch": 0.01660140596734675,
321
+ "grad_norm": 0.1522049605846405,
322
+ "learning_rate": 9.999989119488335e-05,
323
+ "loss": 1.1034,
324
+ "step": 725
325
+ },
326
+ {
327
+ "epoch": 0.017173868242082845,
328
+ "grad_norm": 0.15278272330760956,
329
+ "learning_rate": 9.999988356170929e-05,
330
+ "loss": 1.0654,
331
+ "step": 750
332
+ },
333
+ {
334
+ "epoch": 0.017173868242082845,
335
+ "eval_loss": 1.7413941621780396,
336
+ "eval_runtime": 102.0328,
337
+ "eval_samples_per_second": 3.371,
338
+ "eval_steps_per_second": 0.843,
339
+ "step": 750
340
+ },
341
+ {
342
+ "epoch": 0.017746330516818943,
343
+ "grad_norm": 0.1383546143770218,
344
+ "learning_rate": 9.999987566978397e-05,
345
+ "loss": 1.0686,
346
+ "step": 775
347
+ },
348
+ {
349
+ "epoch": 0.018318792791555037,
350
+ "grad_norm": 0.13285991549491882,
351
+ "learning_rate": 9.999986751910743e-05,
352
+ "loss": 1.137,
353
+ "step": 800
354
+ },
355
+ {
356
+ "epoch": 0.018318792791555037,
357
+ "eval_loss": 1.7390440702438354,
358
+ "eval_runtime": 102.0265,
359
+ "eval_samples_per_second": 3.372,
360
+ "eval_steps_per_second": 0.843,
361
+ "step": 800
362
+ },
363
+ {
364
+ "epoch": 0.01889125506629113,
365
+ "grad_norm": 0.12815497815608978,
366
+ "learning_rate": 9.999985910967972e-05,
367
+ "loss": 1.0539,
368
+ "step": 825
369
+ },
370
+ {
371
+ "epoch": 0.019463717341027226,
372
+ "grad_norm": 0.15192130208015442,
373
+ "learning_rate": 9.999985044150089e-05,
374
+ "loss": 1.1989,
375
+ "step": 850
376
+ },
377
+ {
378
+ "epoch": 0.019463717341027226,
379
+ "eval_loss": 1.7376290559768677,
380
+ "eval_runtime": 102.1111,
381
+ "eval_samples_per_second": 3.369,
382
+ "eval_steps_per_second": 0.842,
383
+ "step": 850
384
+ },
385
+ {
386
+ "epoch": 0.02003617961576332,
387
+ "grad_norm": 0.1515830010175705,
388
+ "learning_rate": 9.999984151457096e-05,
389
+ "loss": 1.1232,
390
+ "step": 875
391
+ },
392
+ {
393
+ "epoch": 0.020608641890499418,
394
+ "grad_norm": 0.12513916194438934,
395
+ "learning_rate": 9.999983232889e-05,
396
+ "loss": 1.0346,
397
+ "step": 900
398
+ },
399
+ {
400
+ "epoch": 0.020608641890499418,
401
+ "eval_loss": 1.7424854040145874,
402
+ "eval_runtime": 102.1134,
403
+ "eval_samples_per_second": 3.369,
404
+ "eval_steps_per_second": 0.842,
405
+ "step": 900
406
+ },
407
+ {
408
+ "epoch": 0.021181104165235512,
409
+ "grad_norm": 0.11260014027357101,
410
+ "learning_rate": 9.999982288445806e-05,
411
+ "loss": 1.0787,
412
+ "step": 925
413
+ },
414
+ {
415
+ "epoch": 0.021753566439971606,
416
+ "grad_norm": 0.13868771493434906,
417
+ "learning_rate": 9.999981318127517e-05,
418
+ "loss": 1.0422,
419
+ "step": 950
420
+ },
421
+ {
422
+ "epoch": 0.021753566439971606,
423
+ "eval_loss": 1.7349718809127808,
424
+ "eval_runtime": 102.081,
425
+ "eval_samples_per_second": 3.37,
426
+ "eval_steps_per_second": 0.842,
427
+ "step": 950
428
+ },
429
+ {
430
+ "epoch": 0.0223260287147077,
431
+ "grad_norm": 0.12388849258422852,
432
+ "learning_rate": 9.99998032193414e-05,
433
+ "loss": 1.0137,
434
+ "step": 975
435
+ },
436
+ {
437
+ "epoch": 0.022898490989443795,
438
+ "grad_norm": 0.1819520741701126,
439
+ "learning_rate": 9.999979299865677e-05,
440
+ "loss": 1.0435,
441
+ "step": 1000
442
+ },
443
+ {
444
+ "epoch": 0.022898490989443795,
445
+ "eval_loss": 1.73760986328125,
446
+ "eval_runtime": 102.082,
447
+ "eval_samples_per_second": 3.37,
448
+ "eval_steps_per_second": 0.842,
449
+ "step": 1000
450
+ }
451
+ ],
452
+ "logging_steps": 25,
453
+ "max_steps": 1091775,
454
+ "num_input_tokens_seen": 0,
455
+ "num_train_epochs": 25,
456
+ "save_steps": 1000,
457
+ "stateful_callbacks": {
458
+ "EarlyStoppingCallback": {
459
+ "args": {
460
+ "early_stopping_patience": 10,
461
+ "early_stopping_threshold": 0.0
462
+ },
463
+ "attributes": {
464
+ "early_stopping_patience_counter": 0
465
+ }
466
+ },
467
+ "TrainerControl": {
468
+ "args": {
469
+ "should_epoch_stop": false,
470
+ "should_evaluate": false,
471
+ "should_log": false,
472
+ "should_save": true,
473
+ "should_training_stop": false
474
+ },
475
+ "attributes": {}
476
+ }
477
+ },
478
+ "total_flos": 3.255887790814003e+17,
479
+ "train_batch_size": 2,
480
+ "trial_name": null,
481
+ "trial_params": null
482
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:badfd1c03ae5846b633696ab631af3b20d68bfd10ca6d88c7cf595f575831050
3
+ size 5432