File size: 4,373 Bytes
a7d8dc6
 
 
 
3987c51
 
a7d8dc6
 
 
 
3987c51
 
a7d8dc6
 
 
 
 
 
 
 
 
 
3987c51
a7d8dc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: apache-2.0
library_name: peft
tags:
- alignment-handbook
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: zephyr-7b-gpo-u3-i1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zephyr-7b-gpo-u3-i1

This model is a fine-tuned version of [DUAL-GPO/zephyr-7b-gpo-update3-i0](https://huggingface.co/DUAL-GPO/zephyr-7b-gpo-update3-i0) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0976
- Rewards/chosen: -0.2046
- Rewards/rejected: -0.1684
- Rewards/accuracies: 0.3440
- Rewards/margins: -0.0362
- Logps/rejected: -271.7846
- Logps/chosen: -287.1580
- Logits/rejected: -1.8253
- Logits/chosen: -1.9851

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.3803        | 0.4   | 100  | 0.0537          | 0.0            | 0.0              | 0.0                | 0.0             | -254.9398      | -266.6976    | -1.8067         | -1.9618       |
| 0.2732        | 0.8   | 200  | 0.0585          | -0.0406        | -0.0433          | 0.4405             | 0.0028          | -259.2744      | -270.7553    | -1.8367         | -1.9952       |
| 0.3013        | 1.2   | 300  | 0.0800          | -0.3312        | -0.3632          | 0.4645             | 0.0319          | -291.2575      | -299.8226    | -1.8131         | -1.9752       |
| 0.3433        | 1.6   | 400  | 0.0812          | -0.3364        | -0.3695          | 0.4675             | 0.0331          | -291.8892      | -300.3361    | -1.8102         | -1.9721       |
| 0.3606        | 2.0   | 500  | 0.1100          | -0.3181        | -0.2920          | 0.3735             | -0.0262         | -284.1371      | -298.5123    | -1.8348         | -1.9970       |
| 0.3038        | 2.4   | 600  | 0.1092          | -0.3233        | -0.2979          | 0.3770             | -0.0254         | -284.7261      | -299.0256    | -1.8317         | -1.9936       |
| 0.3161        | 2.8   | 700  | 0.1069          | -0.3172        | -0.2929          | 0.3800             | -0.0243         | -284.2322      | -298.4158    | -1.8345         | -1.9966       |
| 0.3852        | 3.2   | 800  | 0.0918          | -0.2304        | -0.2057          | 0.3685             | -0.0247         | -275.5103      | -289.7388    | -1.8409         | -2.0019       |
| 0.3359        | 3.6   | 900  | 0.0983          | -0.2063        | -0.1696          | 0.3430             | -0.0368         | -271.8958      | -287.3323    | -1.8240         | -1.9838       |
| 0.3701        | 4.0   | 1000 | 0.0982          | -0.2062        | -0.1693          | 0.3455             | -0.0368         | -271.8734      | -287.3159    | -1.8241         | -1.9838       |
| 0.4025        | 4.4   | 1100 | 0.0975          | -0.2047        | -0.1687          | 0.3455             | -0.0359         | -271.8127      | -287.1649    | -1.8260         | -1.9858       |
| 0.3754        | 4.8   | 1200 | 0.0974          | -0.2044        | -0.1685          | 0.3440             | -0.0359         | -271.7890      | -287.1331    | -1.8256         | -1.9853       |


### Framework versions

- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2