Initial Deep RL course agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +96 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 261.95 +/- 29.48
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f481e3757e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f481e375870>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f481e375900>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f481e375990>", "_build": "<function ActorCriticPolicy._build at 0x7f481e375a20>", "forward": "<function ActorCriticPolicy.forward at 0x7f481e375ab0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f481e375b40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f481e375bd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f481e375c60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f481e375cf0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f481e375d80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f481e375e10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f481e37c2c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683062989544283003, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALNOTr3VUaw/iienvkMOrL71dge9XFQdvgAAAAAAAAAAwD4YPv5wwT4vBim++ZOBvoNgUT2R1p88AAAAAAAAAAC6RyI+LfCPPq1VSb7Ji3K+7FZaPA41gzwAAAAAAAAAAOa2Sr61+Aw+1QJLPk7hOb72sPU8eAlXuwAAAAAAAAAAjadTPnregz9FJKI+Lw/dvldkZz5wlGm8AAAAAAAAAABzAKy9ui6vPyOExL4cCLK+S/rRvbIHZ74AAAAAAAAAADNq0DyPrl66ajCsN2sXADOOCLe3D0LFtgAAgD8AAIA/oNIoPu3Oij5L9eW9Fh6MvnsgwjyIs0K8AAAAAAAAAACaQpk9e8amurgSgbkLeG60vpOcOUJclDgAAIA/AACAP2aJsj3i+Jc//imKPutZ5L4/u9A9WVGRPQAAAAAAAAAAAA6ZPfzFID3V2mG+ip9Bvr1TtLwF5WC9AAAAAAAAAAAAZFw8D38IvB04yLyVX6w8nHZbvXSrjj0AAIA/AACAPyagBj5CFnA/aXpBPf125r40PNs92q+xPAAAAAAAAAAAmgYaPvUlhj971aE+8xEEv8cSIz4nSxc8AAAAAAAAAACzaSk9cT0huaI/JrlVBOqyS0XUu9NdRDgAAIA/AACAPzOi+7xIkZi6JV7itiNdBLK9mA473K0DNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMID4C4q9eacUCUhpRSlIwBbJRN0AGMAXSUR0CZuukFwDNhdX2UKGgGaAloD0MIxebj2lBQcUCUhpRSlGgVTR4BaBZHQJm+UkQf6oF1fZQoaAZoCWgPQwgMj/0sFj9uQJSGlFKUaBVNXgFoFkdAmb7nIZIg/3V9lChoBmgJaA9DCF2HakqyOEtAlIaUUpRoFUvRaBZHQJnAcNSZSel1fZQoaAZoCWgPQwhfCaTErthwQJSGlFKUaBVNgwJoFkdAmcLYkE9t/HV9lChoBmgJaA9DCCWyD7JsFnFAlIaUUpRoFUv8aBZHQJnC5qnFYMh1fZQoaAZoCWgPQwi3e7lPjrhsQJSGlFKUaBVNNgFoFkdAmcRuQyRB/3V9lChoBmgJaA9DCH1cGyoGUXBAlIaUUpRoFU0+AmgWR0CZxUmj0tiAdX2UKGgGaAloD0MIoz1eSIfJb0CUhpRSlGgVTREBaBZHQJncVUHY6GR1fZQoaAZoCWgPQwg9J71vfAFwQJSGlFKUaBVNUAFoFkdAmdxVN5+pfnV9lChoBmgJaA9DCGco7niTf2tAlIaUUpRoFU3HAWgWR0CZ3FUt7KJVdX2UKGgGaAloD0MIg8KgTKOMcUCUhpRSlGgVTVoBaBZHQJncqgWac7R1fZQoaAZoCWgPQwg1m8dhcDNwQJSGlFKUaBVNZwFoFkdAmd1nFPznR3V9lChoBmgJaA9DCIZxN4gW2nBAlIaUUpRoFU1NAmgWR0CZ3+4jrzGxdX2UKGgGaAloD0MIqFKzB9owaECUhpRSlGgVTegDaBZHQJngX8WKuSx1fZQoaAZoCWgPQwjRyyiW231xQJSGlFKUaBVNIwJoFkdAmeDJcX3xnXV9lChoBmgJaA9DCN3qOen9N3FAlIaUUpRoFU2VAWgWR0CZ4/Ddgv12dX2UKGgGaAloD0MIg/xs5PqtcECUhpRSlGgVTWYBaBZHQJnkB11W8yx1fZQoaAZoCWgPQwh8mL1sO7FuQJSGlFKUaBVNRQFoFkdAmeTT5GjKxXV9lChoBmgJaA9DCHWw/s9hqHFAlIaUUpRoFU1JAWgWR0CZ5QIuoP07dX2UKGgGaAloD0MI9kTXhd+jcUCUhpRSlGgVTRYBaBZHQJnlJ+2E0zl1fZQoaAZoCWgPQwg8vyhBP3RyQJSGlFKUaBVNMQFoFkdAmebbfHggo3V9lChoBmgJaA9DCJUrvMvFzm9AlIaUUpRoFU0oAmgWR0CZ6eAiml67dX2UKGgGaAloD0MI8z6O5oh4ckCUhpRSlGgVTY8BaBZHQJnqltix3V11fZQoaAZoCWgPQwgNp8zNdypwQJSGlFKUaBVNCwFoFkdAmerH3L3bmHV9lChoBmgJaA9DCEbRAx9DNnJAlIaUUpRoFU0fAWgWR0CZ6w7zkIX1dX2UKGgGaAloD0MIAFMGDugocUCUhpRSlGgVTYABaBZHQJnrQMuvllt1fZQoaAZoCWgPQwhS0y6m2c5xQJSGlFKUaBVNpwFoFkdAmet1wT/Q0HV9lChoBmgJaA9DCNyBOuVRFm9AlIaUUpRoFU0+AWgWR0CZ67P8yeqadX2UKGgGaAloD0MIzNO5opR+SUCUhpRSlGgVS9xoFkdAmewFDSgGr3V9lChoBmgJaA9DCD48S5BRB3BAlIaUUpRoFU0WAmgWR0CZ7Y/m1YyPdX2UKGgGaAloD0MIEf3a+umjUkCUhpRSlGgVS/FoFkdAme2QdGRV63V9lChoBmgJaA9DCEWfjzLiEmZAlIaUUpRoFU3oA2gWR0CZ7c212JSBdX2UKGgGaAloD0MISl8IOS/8cUCUhpRSlGgVTRoCaBZHQJnvTtShrWR1fZQoaAZoCWgPQwhU4jrGFcFxQJSGlFKUaBVNVQFoFkdAme/M4PwuunV9lChoBmgJaA9DCF68H7dfv3BAlIaUUpRoFU0YAWgWR0CZ8G1pj+aSdX2UKGgGaAloD0MISYWxhaCycECUhpRSlGgVTQUBaBZHQJn0gE6kqMF1fZQoaAZoCWgPQwgAyXTodHdwQJSGlFKUaBVNIgFoFkdAmfXJle4TbnV9lChoBmgJaA9DCC7GwDoO8m9AlIaUUpRoFU00AWgWR0CZ9g3BpHqedX2UKGgGaAloD0MIZhTLLa3yb0CUhpRSlGgVTS8BaBZHQJn2GZML4N91fZQoaAZoCWgPQwjUKCSZFctyQJSGlFKUaBVNHwFoFkdAmfZq6WgOBnV9lChoBmgJaA9DCKK4403++m9AlIaUUpRoFU1cAWgWR0CZ91oAXEZSdX2UKGgGaAloD0MIeHx71yBdb0CUhpRSlGgVTQkBaBZHQJn3d+OOsDJ1fZQoaAZoCWgPQwiEDyVa8mlxQJSGlFKUaBVNjwFoFkdAmfhnww0wanV9lChoBmgJaA9DCM4cklqokXJAlIaUUpRoFU03AWgWR0CZ+WFBIFvAdX2UKGgGaAloD0MI/wdYq/bkcECUhpRSlGgVTQgBaBZHQJn6C1mapgl1fZQoaAZoCWgPQwidS3FVWXtyQJSGlFKUaBVNXAFoFkdAmfphXbM5fnV9lChoBmgJaA9DCLe3W5IDtnBAlIaUUpRoFU1qAmgWR0CZ+372L5ymdX2UKGgGaAloD0MIFEGch5NJcECUhpRSlGgVTUYBaBZHQJn8xNHpbEB1fZQoaAZoCWgPQwiFfTuJiFJvQJSGlFKUaBVNrAFoFkdAmf8nPzFuN3V9lChoBmgJaA9DCFTjpZtEwm5AlIaUUpRoFU1BAWgWR0CaAITtsvZidX2UKGgGaAloD0MIWP58W3DlcECUhpRSlGgVS/5oFkdAmhcTAFgUlHV9lChoBmgJaA9DCCi7mdHPXnBAlIaUUpRoFU19AmgWR0CaFx5yU9pzdX2UKGgGaAloD0MItY0/UVmXcUCUhpRSlGgVS+9oFkdAmhiwuuieunV9lChoBmgJaA9DCOoJSzwgqWxAlIaUUpRoFU1JAWgWR0CaGPx7iQ1adX2UKGgGaAloD0MI0ZDxKJVAckCUhpRSlGgVTXMBaBZHQJoZNsDW9UV1fZQoaAZoCWgPQwhF8wAWuU1xQJSGlFKUaBVNIwFoFkdAmhmTFl05l3V9lChoBmgJaA9DCAr0iTxJb3BAlIaUUpRoFU2DAWgWR0CaGdSOzY29dX2UKGgGaAloD0MIzXUaaelAcECUhpRSlGgVTU0BaBZHQJobpz6rNnp1fZQoaAZoCWgPQwj7A+W2/RhzQJSGlFKUaBVNNgFoFkdAmhxYlD4QBnV9lChoBmgJaA9DCLZlwFmKt3FAlIaUUpRoFU3bAWgWR0CaHSLpRoAXdX2UKGgGaAloD0MIaM9lahJwSkCUhpRSlGgVTegDaBZHQJoeoK5TZQJ1fZQoaAZoCWgPQwg0L4fd97JyQJSGlFKUaBVNbAFoFkdAmh+ug6EJ0HV9lChoBmgJaA9DCBwkRPlC2XFAlIaUUpRoFU0hAmgWR0CaIGrBj4HpdX2UKGgGaAloD0MIsFQX8DICc0CUhpRSlGgVTRIBaBZHQJog1I6Kcd51fZQoaAZoCWgPQwgIPZtVH9lwQJSGlFKUaBVNUQFoFkdAmiD0F4cFQnV9lChoBmgJaA9DCMtmDkkt8G9AlIaUUpRoFU04AWgWR0CaIVDGLk0adX2UKGgGaAloD0MIUdzxJj/Gb0CUhpRSlGgVTQcBaBZHQJohzcpLEk11fZQoaAZoCWgPQwh/3H755KpvQJSGlFKUaBVNBgFoFkdAmiH6AnUlRnV9lChoBmgJaA9DCHuH26Fh3XFAlIaUUpRoFU0KAWgWR0CaIkbS7Xg+dX2UKGgGaAloD0MIthSQ9n/PcECUhpRSlGgVTRsBaBZHQJojQP7N0Nl1fZQoaAZoCWgPQwgNUBpq1BxyQJSGlFKUaBVNawFoFkdAmiOEf9xZMnV9lChoBmgJaA9DCCcz3lb6q29AlIaUUpRoFU1dAWgWR0CaJQiY9gWrdX2UKGgGaAloD0MIaCPXTSmebkCUhpRSlGgVTQ0BaBZHQJol0UGmk311fZQoaAZoCWgPQwhbejTV05BwQJSGlFKUaBVNRQFoFkdAmicIqTbFj3V9lChoBmgJaA9DCBMOvcVDE3BAlIaUUpRoFU1gAWgWR0CaJz8Sf16FdX2UKGgGaAloD0MI0CueeuTacUCUhpRSlGgVTTsBaBZHQJoqCitaIN51fZQoaAZoCWgPQwhkc9U8B8tzQJSGlFKUaBVNGwFoFkdAmiuYa99MK3V9lChoBmgJaA9DCPvrFRbcEnBAlIaUUpRoFU09AWgWR0CaLBh9LHuJdX2UKGgGaAloD0MIfEYiNELmcECUhpRSlGgVTQABaBZHQJosTEsJ6Y51fZQoaAZoCWgPQwhHdM+6BotyQJSGlFKUaBVNBQFoFkdAmizYbsF+u3V9lChoBmgJaA9DCNCaH3/panNAlIaUUpRoFU1rAWgWR0CaLpnYg7o0dX2UKGgGaAloD0MIWaSJd4CDTkCUhpRSlGgVTegDaBZHQJou/v4M4Ll1fZQoaAZoCWgPQwinO088pyNwQJSGlFKUaBVNmQFoFkdAmi8w6dUbUHV9lChoBmgJaA9DCAEwnkEDFXFAlIaUUpRoFU1uAWgWR0CaL1MEA5q/dX2UKGgGaAloD0MI3LsGfellcUCUhpRSlGgVTaYBaBZHQJovrb48EFJ1fZQoaAZoCWgPQwibHD7pRC9yQJSGlFKUaBVL8GgWR0CaMCy3Td+HdX2UKGgGaAloD0MI1ub/VcepckCUhpRSlGgVTUoBaBZHQJow2Hbh3q11fZQoaAZoCWgPQwjfxftxu8BwQJSGlFKUaBVN9wFoFkdAmjFqIi1RcnV9lChoBmgJaA9DCHjuPVyyjnFAlIaUUpRoFU1gAWgWR0CaMwGRFI/adX2UKGgGaAloD0MIZ3xfXGrhcUCUhpRSlGgVTYQBaBZHQJozBuGbkOt1fZQoaAZoCWgPQwgqqn6lc+RuQJSGlFKUaBVNJgFoFkdAmjO6yWzF/HV9lChoBmgJaA9DCChDVUzl7HBAlIaUUpRoFU0ZAWgWR0CaNHAYHgP3dX2UKGgGaAloD0MIRrJHqFkXckCUhpRSlGgVTQ4BaBZHQJo0eQ+2Vml1fZQoaAZoCWgPQwjyCdl5GxxvQJSGlFKUaBVN5wJoFkdAmjbaRuCPIXV9lChoBmgJaA9DCJIFTOBWQHFAlIaUUpRoFU0eAWgWR0CaN0R+z+m4dX2UKGgGaAloD0MIIOwUq0b+ckCUhpRSlGgVTR4BaBZHQJo3cgeRxLl1fZQoaAZoCWgPQwgnEeFfhAtyQJSGlFKUaBVNZgFoFkdAmjfdOymhunV9lChoBmgJaA9DCKLSiJn9D3FAlIaUUpRoFU0vAWgWR0CaOBRmseXBdX2UKGgGaAloD0MIpKgz99ApcUCUhpRSlGgVTRYBaBZHQJo4QrK/2011ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1fd4c1013bf2284f500c7076df91e96d9c8f374e288e17988bfeec632efea50
|
3 |
+
size 147388
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f481e3757e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f481e375870>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f481e375900>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f481e375990>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f481e375a20>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f481e375ab0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f481e375b40>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f481e375bd0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f481e375c60>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f481e375cf0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f481e375d80>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f481e375e10>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f481e37c2c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1683062989544283003,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"lr_schedule": {
|
33 |
+
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
35 |
+
},
|
36 |
+
"_last_obs": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALNOTr3VUaw/iienvkMOrL71dge9XFQdvgAAAAAAAAAAwD4YPv5wwT4vBim++ZOBvoNgUT2R1p88AAAAAAAAAAC6RyI+LfCPPq1VSb7Ji3K+7FZaPA41gzwAAAAAAAAAAOa2Sr61+Aw+1QJLPk7hOb72sPU8eAlXuwAAAAAAAAAAjadTPnregz9FJKI+Lw/dvldkZz5wlGm8AAAAAAAAAABzAKy9ui6vPyOExL4cCLK+S/rRvbIHZ74AAAAAAAAAADNq0DyPrl66ajCsN2sXADOOCLe3D0LFtgAAgD8AAIA/oNIoPu3Oij5L9eW9Fh6MvnsgwjyIs0K8AAAAAAAAAACaQpk9e8amurgSgbkLeG60vpOcOUJclDgAAIA/AACAP2aJsj3i+Jc//imKPutZ5L4/u9A9WVGRPQAAAAAAAAAAAA6ZPfzFID3V2mG+ip9Bvr1TtLwF5WC9AAAAAAAAAAAAZFw8D38IvB04yLyVX6w8nHZbvXSrjj0AAIA/AACAPyagBj5CFnA/aXpBPf125r40PNs92q+xPAAAAAAAAAAAmgYaPvUlhj971aE+8xEEv8cSIz4nSxc8AAAAAAAAAACzaSk9cT0huaI/JrlVBOqyS0XUu9NdRDgAAIA/AACAPzOi+7xIkZi6JV7itiNdBLK9mA473K0DNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_episode_starts": {
|
41 |
+
":type:": "<class 'numpy.ndarray'>",
|
42 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
43 |
+
},
|
44 |
+
"_last_original_obs": null,
|
45 |
+
"_episode_num": 0,
|
46 |
+
"use_sde": false,
|
47 |
+
"sde_sample_freq": -1,
|
48 |
+
"_current_progress_remaining": -0.015808000000000044,
|
49 |
+
"_stats_window_size": 100,
|
50 |
+
"ep_info_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMID4C4q9eacUCUhpRSlIwBbJRN0AGMAXSUR0CZuukFwDNhdX2UKGgGaAloD0MIxebj2lBQcUCUhpRSlGgVTR4BaBZHQJm+UkQf6oF1fZQoaAZoCWgPQwgMj/0sFj9uQJSGlFKUaBVNXgFoFkdAmb7nIZIg/3V9lChoBmgJaA9DCF2HakqyOEtAlIaUUpRoFUvRaBZHQJnAcNSZSel1fZQoaAZoCWgPQwhfCaTErthwQJSGlFKUaBVNgwJoFkdAmcLYkE9t/HV9lChoBmgJaA9DCCWyD7JsFnFAlIaUUpRoFUv8aBZHQJnC5qnFYMh1fZQoaAZoCWgPQwi3e7lPjrhsQJSGlFKUaBVNNgFoFkdAmcRuQyRB/3V9lChoBmgJaA9DCH1cGyoGUXBAlIaUUpRoFU0+AmgWR0CZxUmj0tiAdX2UKGgGaAloD0MIoz1eSIfJb0CUhpRSlGgVTREBaBZHQJncVUHY6GR1fZQoaAZoCWgPQwg9J71vfAFwQJSGlFKUaBVNUAFoFkdAmdxVN5+pfnV9lChoBmgJaA9DCGco7niTf2tAlIaUUpRoFU3HAWgWR0CZ3FUt7KJVdX2UKGgGaAloD0MIg8KgTKOMcUCUhpRSlGgVTVoBaBZHQJncqgWac7R1fZQoaAZoCWgPQwg1m8dhcDNwQJSGlFKUaBVNZwFoFkdAmd1nFPznR3V9lChoBmgJaA9DCIZxN4gW2nBAlIaUUpRoFU1NAmgWR0CZ3+4jrzGxdX2UKGgGaAloD0MIqFKzB9owaECUhpRSlGgVTegDaBZHQJngX8WKuSx1fZQoaAZoCWgPQwjRyyiW231xQJSGlFKUaBVNIwJoFkdAmeDJcX3xnXV9lChoBmgJaA9DCN3qOen9N3FAlIaUUpRoFU2VAWgWR0CZ4/Ddgv12dX2UKGgGaAloD0MIg/xs5PqtcECUhpRSlGgVTWYBaBZHQJnkB11W8yx1fZQoaAZoCWgPQwh8mL1sO7FuQJSGlFKUaBVNRQFoFkdAmeTT5GjKxXV9lChoBmgJaA9DCHWw/s9hqHFAlIaUUpRoFU1JAWgWR0CZ5QIuoP07dX2UKGgGaAloD0MI9kTXhd+jcUCUhpRSlGgVTRYBaBZHQJnlJ+2E0zl1fZQoaAZoCWgPQwg8vyhBP3RyQJSGlFKUaBVNMQFoFkdAmebbfHggo3V9lChoBmgJaA9DCJUrvMvFzm9AlIaUUpRoFU0oAmgWR0CZ6eAiml67dX2UKGgGaAloD0MI8z6O5oh4ckCUhpRSlGgVTY8BaBZHQJnqltix3V11fZQoaAZoCWgPQwgNp8zNdypwQJSGlFKUaBVNCwFoFkdAmerH3L3bmHV9lChoBmgJaA9DCEbRAx9DNnJAlIaUUpRoFU0fAWgWR0CZ6w7zkIX1dX2UKGgGaAloD0MIAFMGDugocUCUhpRSlGgVTYABaBZHQJnrQMuvllt1fZQoaAZoCWgPQwhS0y6m2c5xQJSGlFKUaBVNpwFoFkdAmet1wT/Q0HV9lChoBmgJaA9DCNyBOuVRFm9AlIaUUpRoFU0+AWgWR0CZ67P8yeqadX2UKGgGaAloD0MIzNO5opR+SUCUhpRSlGgVS9xoFkdAmewFDSgGr3V9lChoBmgJaA9DCD48S5BRB3BAlIaUUpRoFU0WAmgWR0CZ7Y/m1YyPdX2UKGgGaAloD0MIEf3a+umjUkCUhpRSlGgVS/FoFkdAme2QdGRV63V9lChoBmgJaA9DCEWfjzLiEmZAlIaUUpRoFU3oA2gWR0CZ7c212JSBdX2UKGgGaAloD0MISl8IOS/8cUCUhpRSlGgVTRoCaBZHQJnvTtShrWR1fZQoaAZoCWgPQwhU4jrGFcFxQJSGlFKUaBVNVQFoFkdAme/M4PwuunV9lChoBmgJaA9DCF68H7dfv3BAlIaUUpRoFU0YAWgWR0CZ8G1pj+aSdX2UKGgGaAloD0MISYWxhaCycECUhpRSlGgVTQUBaBZHQJn0gE6kqMF1fZQoaAZoCWgPQwgAyXTodHdwQJSGlFKUaBVNIgFoFkdAmfXJle4TbnV9lChoBmgJaA9DCC7GwDoO8m9AlIaUUpRoFU00AWgWR0CZ9g3BpHqedX2UKGgGaAloD0MIZhTLLa3yb0CUhpRSlGgVTS8BaBZHQJn2GZML4N91fZQoaAZoCWgPQwjUKCSZFctyQJSGlFKUaBVNHwFoFkdAmfZq6WgOBnV9lChoBmgJaA9DCKK4403++m9AlIaUUpRoFU1cAWgWR0CZ91oAXEZSdX2UKGgGaAloD0MIeHx71yBdb0CUhpRSlGgVTQkBaBZHQJn3d+OOsDJ1fZQoaAZoCWgPQwiEDyVa8mlxQJSGlFKUaBVNjwFoFkdAmfhnww0wanV9lChoBmgJaA9DCM4cklqokXJAlIaUUpRoFU03AWgWR0CZ+WFBIFvAdX2UKGgGaAloD0MI/wdYq/bkcECUhpRSlGgVTQgBaBZHQJn6C1mapgl1fZQoaAZoCWgPQwidS3FVWXtyQJSGlFKUaBVNXAFoFkdAmfphXbM5fnV9lChoBmgJaA9DCLe3W5IDtnBAlIaUUpRoFU1qAmgWR0CZ+372L5ymdX2UKGgGaAloD0MIFEGch5NJcECUhpRSlGgVTUYBaBZHQJn8xNHpbEB1fZQoaAZoCWgPQwiFfTuJiFJvQJSGlFKUaBVNrAFoFkdAmf8nPzFuN3V9lChoBmgJaA9DCFTjpZtEwm5AlIaUUpRoFU1BAWgWR0CaAITtsvZidX2UKGgGaAloD0MIWP58W3DlcECUhpRSlGgVS/5oFkdAmhcTAFgUlHV9lChoBmgJaA9DCCi7mdHPXnBAlIaUUpRoFU19AmgWR0CaFx5yU9pzdX2UKGgGaAloD0MItY0/UVmXcUCUhpRSlGgVS+9oFkdAmhiwuuieunV9lChoBmgJaA9DCOoJSzwgqWxAlIaUUpRoFU1JAWgWR0CaGPx7iQ1adX2UKGgGaAloD0MI0ZDxKJVAckCUhpRSlGgVTXMBaBZHQJoZNsDW9UV1fZQoaAZoCWgPQwhF8wAWuU1xQJSGlFKUaBVNIwFoFkdAmhmTFl05l3V9lChoBmgJaA9DCAr0iTxJb3BAlIaUUpRoFU2DAWgWR0CaGdSOzY29dX2UKGgGaAloD0MIzXUaaelAcECUhpRSlGgVTU0BaBZHQJobpz6rNnp1fZQoaAZoCWgPQwj7A+W2/RhzQJSGlFKUaBVNNgFoFkdAmhxYlD4QBnV9lChoBmgJaA9DCLZlwFmKt3FAlIaUUpRoFU3bAWgWR0CaHSLpRoAXdX2UKGgGaAloD0MIaM9lahJwSkCUhpRSlGgVTegDaBZHQJoeoK5TZQJ1fZQoaAZoCWgPQwg0L4fd97JyQJSGlFKUaBVNbAFoFkdAmh+ug6EJ0HV9lChoBmgJaA9DCBwkRPlC2XFAlIaUUpRoFU0hAmgWR0CaIGrBj4HpdX2UKGgGaAloD0MIsFQX8DICc0CUhpRSlGgVTRIBaBZHQJog1I6Kcd51fZQoaAZoCWgPQwgIPZtVH9lwQJSGlFKUaBVNUQFoFkdAmiD0F4cFQnV9lChoBmgJaA9DCMtmDkkt8G9AlIaUUpRoFU04AWgWR0CaIVDGLk0adX2UKGgGaAloD0MIUdzxJj/Gb0CUhpRSlGgVTQcBaBZHQJohzcpLEk11fZQoaAZoCWgPQwh/3H755KpvQJSGlFKUaBVNBgFoFkdAmiH6AnUlRnV9lChoBmgJaA9DCHuH26Fh3XFAlIaUUpRoFU0KAWgWR0CaIkbS7Xg+dX2UKGgGaAloD0MIthSQ9n/PcECUhpRSlGgVTRsBaBZHQJojQP7N0Nl1fZQoaAZoCWgPQwgNUBpq1BxyQJSGlFKUaBVNawFoFkdAmiOEf9xZMnV9lChoBmgJaA9DCCcz3lb6q29AlIaUUpRoFU1dAWgWR0CaJQiY9gWrdX2UKGgGaAloD0MIaCPXTSmebkCUhpRSlGgVTQ0BaBZHQJol0UGmk311fZQoaAZoCWgPQwhbejTV05BwQJSGlFKUaBVNRQFoFkdAmicIqTbFj3V9lChoBmgJaA9DCBMOvcVDE3BAlIaUUpRoFU1gAWgWR0CaJz8Sf16FdX2UKGgGaAloD0MI0CueeuTacUCUhpRSlGgVTTsBaBZHQJoqCitaIN51fZQoaAZoCWgPQwhkc9U8B8tzQJSGlFKUaBVNGwFoFkdAmiuYa99MK3V9lChoBmgJaA9DCPvrFRbcEnBAlIaUUpRoFU09AWgWR0CaLBh9LHuJdX2UKGgGaAloD0MIfEYiNELmcECUhpRSlGgVTQABaBZHQJosTEsJ6Y51fZQoaAZoCWgPQwhHdM+6BotyQJSGlFKUaBVNBQFoFkdAmizYbsF+u3V9lChoBmgJaA9DCNCaH3/panNAlIaUUpRoFU1rAWgWR0CaLpnYg7o0dX2UKGgGaAloD0MIWaSJd4CDTkCUhpRSlGgVTegDaBZHQJou/v4M4Ll1fZQoaAZoCWgPQwinO088pyNwQJSGlFKUaBVNmQFoFkdAmi8w6dUbUHV9lChoBmgJaA9DCAEwnkEDFXFAlIaUUpRoFU1uAWgWR0CaL1MEA5q/dX2UKGgGaAloD0MI3LsGfellcUCUhpRSlGgVTaYBaBZHQJovrb48EFJ1fZQoaAZoCWgPQwibHD7pRC9yQJSGlFKUaBVL8GgWR0CaMCy3Td+HdX2UKGgGaAloD0MI1ub/VcepckCUhpRSlGgVTUoBaBZHQJow2Hbh3q11fZQoaAZoCWgPQwjfxftxu8BwQJSGlFKUaBVN9wFoFkdAmjFqIi1RcnV9lChoBmgJaA9DCHjuPVyyjnFAlIaUUpRoFU1gAWgWR0CaMwGRFI/adX2UKGgGaAloD0MIZ3xfXGrhcUCUhpRSlGgVTYQBaBZHQJozBuGbkOt1fZQoaAZoCWgPQwgqqn6lc+RuQJSGlFKUaBVNJgFoFkdAmjO6yWzF/HV9lChoBmgJaA9DCChDVUzl7HBAlIaUUpRoFU0ZAWgWR0CaNHAYHgP3dX2UKGgGaAloD0MIRrJHqFkXckCUhpRSlGgVTQ4BaBZHQJo0eQ+2Vml1fZQoaAZoCWgPQwjyCdl5GxxvQJSGlFKUaBVN5wJoFkdAmjbaRuCPIXV9lChoBmgJaA9DCJIFTOBWQHFAlIaUUpRoFU0eAWgWR0CaN0R+z+m4dX2UKGgGaAloD0MIIOwUq0b+ckCUhpRSlGgVTR4BaBZHQJo3cgeRxLl1fZQoaAZoCWgPQwgnEeFfhAtyQJSGlFKUaBVNZgFoFkdAmjfdOymhunV9lChoBmgJaA9DCKLSiJn9D3FAlIaUUpRoFU0vAWgWR0CaOBRmseXBdX2UKGgGaAloD0MIpKgz99ApcUCUhpRSlGgVTRYBaBZHQJo4QrK/2011ZS4="
|
53 |
+
},
|
54 |
+
"ep_success_buffer": {
|
55 |
+
":type:": "<class 'collections.deque'>",
|
56 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
+
},
|
58 |
+
"_n_updates": 248,
|
59 |
+
"observation_space": {
|
60 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
61 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
62 |
+
"dtype": "float32",
|
63 |
+
"_shape": [
|
64 |
+
8
|
65 |
+
],
|
66 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
67 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
68 |
+
"bounded_below": "[False False False False False False False False]",
|
69 |
+
"bounded_above": "[False False False False False False False False]",
|
70 |
+
"_np_random": null
|
71 |
+
},
|
72 |
+
"action_space": {
|
73 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
74 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
75 |
+
"n": 4,
|
76 |
+
"_shape": [],
|
77 |
+
"dtype": "int64",
|
78 |
+
"_np_random": null
|
79 |
+
},
|
80 |
+
"n_envs": 16,
|
81 |
+
"n_steps": 1024,
|
82 |
+
"gamma": 0.999,
|
83 |
+
"gae_lambda": 0.98,
|
84 |
+
"ent_coef": 0.01,
|
85 |
+
"vf_coef": 0.5,
|
86 |
+
"max_grad_norm": 0.5,
|
87 |
+
"batch_size": 64,
|
88 |
+
"n_epochs": 4,
|
89 |
+
"clip_range": {
|
90 |
+
":type:": "<class 'function'>",
|
91 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
92 |
+
},
|
93 |
+
"clip_range_vf": null,
|
94 |
+
"normalize_advantage": true,
|
95 |
+
"target_kl": null
|
96 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80fe72f6a09c1fe7997aefcae338b43822dd9e94e9d35e15497b69945d6897cb
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:153b87af90ff9d9d71b23e4623fe700203adbae0ecf4767b26b1adfca20dfd66
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (226 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 261.9487585363846, "std_reward": 29.478006521613988, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-02T21:57:15.733181"}
|