File size: 8,540 Bytes
6488982
 
 
 
 
 
 
 
 
 
 
c418e48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6488982
8a7b8dc
b251d73
6488982
 
 
b251d73
6488982
b251d73
6488982
 
b251d73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c418e48
 
 
 
 
 
 
 
 
 
 
 
 
 
cc50b4f
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
---
base_model: unsloth/qwen2.5-7b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
license: apache-2.0
language:
- en
model-index:
- name: AetherSett
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: wis-k/instruction-following-eval
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 53.7
      name: averaged accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FAetherSett
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: SaylorTwift/bbh
      split: test
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 34.74
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FAetherSett
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: lighteval/MATH-Hard
      split: test
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 30.74
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FAetherSett
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 7.72
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FAetherSett
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 16.21
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FAetherSett
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 36.43
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FAetherSett
      name: Open LLM Leaderboard
---
![image](./image.webp)
# SwiftText: Accelerating Text Generation with Optimized Efficiency

- **Developed by:** Daemontatox
- **License:** apache-2.0
- **Base Model:** [unsloth/qwen2.5-7b-instruct-bnb-4bit](https://huggingface.co/unsloth/qwen2.5-7b-instruct-bnb-4bit)

SwiftText is a fine-tuned language model built upon the robust Qwen2.5 architecture, specifically optimized for rapid and efficient text generation. Leveraging the power of the [Unsloth](https://github.com/unslothai/unsloth) framework and Hugging Face's TRL library, SwiftText was trained in half the time of conventional methods, delivering impressive performance without compromising quality.

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)

## Model Overview:  Efficiency Meets Performance

SwiftText embodies the principle of efficient AI development. By harnessing advanced optimization techniques, this model achieves significant reductions in training time, making powerful language models more accessible and accelerating the development cycle for text generation applications. While the primary focus was on speed, SwiftText retains the strong text generation and instruction-following capabilities of its Qwen2.5 base.

### Key Highlights: Speed and Streamlined Development

- **Accelerated Training:**  Trained 2x faster thanks to the innovative optimizations provided by the Unsloth framework. This rapid training cycle reduces development time and resource consumption.
- **Leveraging Qwen2.5 Strength:** Built upon the capable Qwen2.5-7B-Instruct model, inheriting its proficiency in understanding and generating coherent and contextually relevant text.
- **Optimized for Efficiency:**  Fine-tuned with a focus on maximizing throughput and minimizing computational cost, making it suitable for a wider range of deployment scenarios.
- **TRL-Enhanced:** Integrated with Hugging Face's TRL library during training, potentially benefiting from techniques that improve generation quality and alignment.

### Use Cases: Where Speed and Efficiency Matter

SwiftText is well-suited for applications where rapid text generation is crucial, such as:

- **Fast Content Creation:** Quickly generating drafts for articles, social media posts, and marketing materials.
- **Efficient Summarization:** Rapidly summarizing documents and extracting key information.
- **Responsive Chatbots:** Powering conversational agents that require quick and relevant responses.
- **Prototyping and Experimentation:**  Accelerating the development and testing of new features that rely on text generation.
- **Educational Tools:**  Providing quick explanations and generating examples for learning purposes.

### Training Methodology:  Harnessing the Power of Optimization

SwiftText's rapid training was achieved through the synergistic use of:

- **Unsloth Framework:** A next-generation framework designed to dramatically accelerate the training of large language models through optimized memory management and computational efficiency.
- **Hugging Face's TRL Library:**  Utilizing tools from the TRL library may have contributed to improved generation quality and alignment through techniques like reinforcement learning.

### Getting Started with SwiftText

You can easily load and use SwiftText with the Hugging Face Transformers library:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("Daemontatox/your-swifttext-model-name") # Replace with your actual model name
model = AutoModelForCausalLM.from_pretrained("Daemontatox/your-swifttext-model-name", device_map="auto", load_in_4bit=True)

prompt = "Write a short introduction about efficient text generation."
inputs = tokenizer(prompt, return_tensors="pt").to("cuda") # Or your preferred device
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Acknowledgements
### We gratefully acknowledge the contributions of the Unsloth team and the Hugging Face community for their invaluable tools and resources, which were instrumental in the development of SwiftText.# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/Daemontatox__AetherSett-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=Daemontatox%2FAetherSett&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!

|      Metric       |Value (%)|
|-------------------|--------:|
|**Average**        |    29.92|
|IFEval (0-Shot)    |    53.70|
|BBH (3-Shot)       |    34.74|
|MATH Lvl 5 (4-Shot)|    30.74|
|GPQA (0-shot)      |     7.72|
|MuSR (0-shot)      |    16.21|
|MMLU-PRO (5-shot)  |    36.43|

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/Daemontatox__AetherSett-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=Daemontatox%2FAetherSett&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!

|      Metric       |Value (%)|
|-------------------|--------:|
|**Average**        |    29.92|
|IFEval (0-Shot)    |    53.70|
|BBH (3-Shot)       |    34.74|
|MATH Lvl 5 (4-Shot)|    30.74|
|GPQA (0-shot)      |     7.72|
|MuSR (0-shot)      |    16.21|
|MMLU-PRO (5-shot)  |    36.43|