File size: 6,135 Bytes
2022348 7c978fb 2022348 7c978fb 328d0b3 2022348 328d0b3 5d75120 2022348 328d0b3 5377bb4 2022348 5377bb4 2022348 328d0b3 2022348 328d0b3 5377bb4 328d0b3 5377bb4 328d0b3 5d75120 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
---
base_model: unsloth/Llama-3.2-11B-Vision-Instruct
tags:
- text-generation-inference
- transformers
- unsloth
- mllama
- vision-language
- document-understanding
- data-extraction
license: apache-2.0
language:
- en
library_name: transformers
model-index:
- name: PixelParse_AI
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 43.83
name: averaged accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FPixelParse_AI
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 29.03
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FPixelParse_AI
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 14.43
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FPixelParse_AI
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 9.84
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FPixelParse_AI
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 9.25
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FPixelParse_AI
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 30.87
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FPixelParse_AI
name: Open LLM Leaderboard
---
![image](./image.webp)
# Vision-Language Model for Document Data Extraction
- **Developed by:** Daemontatox
- **License:** apache-2.0
- **Finetuned from model:** unsloth/Llama-3.2-11B-Vision-Instruct
## Overview
This Vision-Language Model (VLM) is purpose-built for extracting structured and unstructured data from various types of documents, including but not limited to:
- Invoices
- Timesheets
- Contracts
- Forms
- Receipts
By utilizing advanced multimodal learning capabilities, this model understands both text and visual layout features, enabling it to parse even complex document structures.
## Key Features
1. **Accurate Data Extraction:**
- Automatically detects and extracts key fields such as dates, names, amounts, itemized details, and more.
- Outputs data in clean and well-structured JSON format.
2. **Robust Multimodal Understanding:**
- Processes both text and visual layout elements (tables, headers, footers).
- Adapts to various document formats and layouts without additional fine-tuning.
3. **Optimized Performance:**
- Fine-tuned using [Unsloth](https://github.com/unslothai/unsloth), enabling 2x faster training.
- Employs Hugging Face’s TRL library for parameter-efficient fine-tuning.
4. **Flexible Deployment:**
- Compatible with a wide range of platforms for integration into document processing pipelines.
- Optimized for inference on GPUs and high-performance environments.
## Use Cases
- **Enterprise Automation:** Automate data entry and document processing tasks in finance, HR, and legal domains.
- **E-invoicing:** Extract critical invoice details for seamless integration with ERP systems.
- **Compliance:** Extract and structure data for auditing and regulatory compliance reporting.
## Training and Fine-Tuning
The fine-tuning process leveraged Unsloth's efficiency optimizations, reducing training time while maintaining high accuracy. The model was trained on a diverse dataset of scanned documents and synthetic examples to ensure robustness across real-world scenarios.
## Acknowledgments
This model was fine-tuned using the powerful capabilities of the [Unsloth](https://github.com/unslothai/unsloth) framework, which significantly accelerates the training of large models.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
---
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/Daemontatox__PixelParse_AI-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=Daemontatox/PixelParse_AI)!
| Metric |Value (%)|
|-------------------|--------:|
|**Average** | 22.87|
|IFEval (0-Shot) | 43.83|
|BBH (3-Shot) | 29.03|
|MATH Lvl 5 (4-Shot)| 14.43|
|GPQA (0-shot) | 9.84|
|MuSR (0-shot) | 9.25|
|MMLU-PRO (5-shot) | 30.87|
|