File size: 8,879 Bytes
7c9c24c c45d1ce 7c9c24c 1b77997 c45d1ce 7c9c24c c45d1ce 1b77997 7c9c24c 9f02ff0 7c9c24c 0450fc5 7c9c24c 0450fc5 1b77997 400ed23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
---
tags:
- long-cot-reasoning
- transformers
- mamba2
- llms
- chain-of-thought
license: apache-2.0
language:
- en
datasets:
- Daemontatox/LongCOT-Reason
- Daemontatox/alpaca_reasoning_COT
base_model:
- Qwen/Qwen2.5-14B-Instruct
pipeline_tag: text-generation
library_name: transformers
model-index:
- name: Sphinx2.0
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 71.23
name: averaged accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FSphinx2.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 49.4
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FSphinx2.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 2.72
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FSphinx2.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 5.82
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FSphinx2.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 13.05
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FSphinx2.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 46.49
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FSphinx2.0
name: Open LLM Leaderboard
---
![Sphinx of Reasoning](./image.webp)
# **Sphinx: The Apex of Logical Deduction and Chain-of-Thought Reasoning**
- **Developed by:** Daemontatox
- **License:** Apache-2.0
- **Base Model:** Fine-tuned from `unsloth/qwen2.5-14b-instruct-bnb-4bit`
- **Accelerated by:** [Unsloth Framework](https://github.com/unslothai/unsloth)
- **TRL-Optimized:** Integrated with Huggingface's TRL library for enhanced performance in logical reasoning.
## **Unveiling Sphinx: Master of Reasoned Thought**
Sphinx is a cutting-edge Long Chain-of-Thought (CoT) reasoning model meticulously crafted to unravel complex challenges requiring rigorous logical analysis. Built upon the robust foundation of the Qwen2.5 architecture, Sphinx excels at constructing coherent, step-by-step thought processes, providing unparalleled insight into its reasoning and ensuring clarity in its conclusions.
> _"Where complexity yields to logical clarity."_
### **Core Strengths: Reasoning, Logic, and CoT**
- **Unrivaled Chain-of-Thought (CoT) Mastery:** Engineered for dissecting intricate problems, Sphinx meticulously constructs each step of its reasoning, offering a transparent and verifiable pathway to the solution.
- **Deep Logical Reasoning Capabilities:** Sphinx is adept at navigating complex logical structures, drawing valid inferences and forming sound conclusions through multi-layered analysis.
- **Exceptional Reasoning Fidelity:** Fine-tuned to maintain the highest standards of logical consistency, Sphinx delivers outputs that are not only correct but also demonstrably well-reasoned.
- **Efficient Long-Context Reasoning:** Leveraging the power of Unsloth, Sphinx processes extensive information efficiently, maintaining logical coherence across extended reasoning chains.
- **Explainable AI through Transparent Logic:** Sphinx's inherent CoT approach provides explicit and understandable reasoning, making its decision-making process transparent and trustworthy.
## **Model Architecture and Fine-tuning for Logical Prowess**
### **Architectural Foundation**
- **Base Model:** Qwen2.5-14B - Renowned for its strong general language understanding, forming a solid basis for specialized reasoning.
- **Parameters:** 14 billion - Providing the capacity to model intricate reasoning patterns.
- **Quantization:** 4-bit precision using BitsAndBytes (bnb) - Optimizing for accessibility without sacrificing logical reasoning accuracy.
- **Extended Reasoning Window:** Supports inputs up to 16k tokens, crucial for accommodating the detailed context required for complex logical deductions.
### **Training Methodology: Honing Logical Acumen**
- **Frameworks:** Huggingface Transformers + TRL + Unsloth - A powerful combination for efficient training and reinforcement learning.
- **Data Sources:** A meticulously curated collection of datasets specifically designed to challenge and refine logical reasoning skills, encompassing academic, legal, and formal logic domains.
- **Optimization Strategies:**
- **LoRA (Low-Rank Adaptation):** Enabling parameter-efficient fine-tuning, focusing on adapting the model for superior logical inference.
- **Reinforcement Learning from Human Feedback (RLHF):** Guiding the model towards generating more logically sound and human-aligned reasoning steps.
## **Sphinx's Reasoning Toolkit: Capabilities in Action**
1. **Masterful Long-CoT Generation:** Deconstructs and conquers multi-layered problems by constructing detailed, logically interconnected reasoning sequences.
2. **Explanatory Power through Logic:** Provides clear, step-by-step logical derivations for its outputs, enhancing trust and understanding.
3. **Adaptable Logical Framework:** Easily tailored to specialized reasoning tasks through targeted fine-tuning, enabling application in diverse logical domains.
## **Unlocking Potential: Applications Driven by Logic**
- **Advanced Academic Research:** Generating in-depth, logically structured analyses for complex scientific and philosophical inquiries.
- **Robust Legal Reasoning Assistance:** Constructing and articulating multi-step legal arguments with precision and logical rigor.
- **Transformative STEM Education:** Guiding learners through intricate mathematical and logical problems with clear, step-by-step explanations.
- **Transparent Cognitive AI Systems:** Powering AI systems where explainability and logical justification are paramount for decision-making.# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/Daemontatox__Sphinx2.0-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=Daemontatox%2FSphinx2.0&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
| Metric |Value (%)|
|-------------------|--------:|
|**Average** | 31.45|
|IFEval (0-Shot) | 71.23|
|BBH (3-Shot) | 49.40|
|MATH Lvl 5 (4-Shot)| 2.72|
|GPQA (0-shot) | 5.82|
|MuSR (0-shot) | 13.05|
|MMLU-PRO (5-shot) | 46.49|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/Daemontatox__Sphinx2.0-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=Daemontatox%2FSphinx2.0&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
| Metric |Value (%)|
|-------------------|--------:|
|**Average** | 31.45|
|IFEval (0-Shot) | 71.23|
|BBH (3-Shot) | 49.40|
|MATH Lvl 5 (4-Shot)| 2.72|
|GPQA (0-shot) | 5.82|
|MuSR (0-shot) | 13.05|
|MMLU-PRO (5-shot) | 46.49|
|