--- language: - en license: mit base_model: distilbert-base-uncased tags: - low-resource NER - token_classification - biomedicine - medical NER - generated_from_trainer datasets: - medicine metrics: - accuracy - precision - recall - f1 model-index: - name: Dagobert42/distilbert-base-uncased-biored-augmented results: [] --- # Dagobert42/distilbert-base-uncased-biored-augmented This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the bigbio/biored dataset. It achieves the following results on the evaluation set: - Loss: 0.5318 - Accuracy: 0.8135 - Precision: 0.6269 - Recall: 0.5274 - F1: 0.5645 - Weighted F1: 0.803 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Weighted F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:| | No log | 1.0 | 25 | 0.5636 | 0.7997 | 0.7329 | 0.4936 | 0.5295 | 0.7843 | | No log | 2.0 | 50 | 0.5561 | 0.8001 | 0.6425 | 0.5518 | 0.5689 | 0.7962 | | No log | 3.0 | 75 | 0.5495 | 0.8093 | 0.7031 | 0.5298 | 0.568 | 0.7974 | | No log | 4.0 | 100 | 0.5552 | 0.8036 | 0.6191 | 0.5854 | 0.5981 | 0.8002 | | No log | 5.0 | 125 | 0.5588 | 0.8069 | 0.6268 | 0.587 | 0.6008 | 0.8032 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.15.0