Upload folder using huggingface_hub
Browse files- .gitattributes +3 -11
- README.md +148 -0
- alphabet.json +1 -0
- config.json +107 -0
- eval.py +164 -0
- full_eval.sh +15 -0
- language_model/2gram_It_Hum_no_df1.bin +3 -0
- language_model/attrs.json +1 -0
- language_model/unigrams.txt +757 -0
- log_mozilla-foundation_common_voice_8_0_it_test_predictions.txt +0 -0
- log_mozilla-foundation_common_voice_8_0_it_test_predictions_greedy.txt +0 -0
- log_mozilla-foundation_common_voice_8_0_it_test_targets.txt +0 -0
- log_mozilla-foundation_common_voice_8_0_it_test_targets_greedy.txt +0 -0
- log_speech-recognition-community-v2_dev_data_it_validation_predictions.txt +0 -0
- log_speech-recognition-community-v2_dev_data_it_validation_predictions_greedy.txt +0 -0
- log_speech-recognition-community-v2_dev_data_it_validation_targets.txt +0 -0
- mozilla-foundation_common_voice_8_0_it_test_eval_results.txt +2 -0
- mozilla-foundation_common_voice_8_0_it_test_eval_results_greedy.txt +2 -0
- preprocessor_config.json +10 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +6 -0
- speech-recognition-community-v2_dev_data_it_validation_eval_results.txt +2 -0
- speech-recognition-community-v2_dev_data_it_validation_eval_results_greedy.txt +2 -0
- tokenizer_config.json +48 -0
- vocab.json +45 -0
.gitattributes
CHANGED
@@ -1,35 +1,27 @@
|
|
1 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
|
|
4 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
|
|
6 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
|
|
11 |
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
13 |
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
17 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
|
21 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
|
|
22 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
|
|
24 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- it
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- automatic-speech-recognition
|
7 |
+
- hf-asr-leaderboard
|
8 |
+
- it
|
9 |
+
- mozilla-foundation/common_voice_8_0
|
10 |
+
- robust-speech-event
|
11 |
+
datasets:
|
12 |
+
- mozilla-foundation/common_voice_8_0
|
13 |
+
model-index:
|
14 |
+
- name: XLS-R Wav2Vec2 Italian by Jonatas Grosman
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Automatic Speech Recognition
|
18 |
+
type: automatic-speech-recognition
|
19 |
+
dataset:
|
20 |
+
name: Common Voice 8
|
21 |
+
type: mozilla-foundation/common_voice_8_0
|
22 |
+
args: it
|
23 |
+
metrics:
|
24 |
+
- name: Test WER
|
25 |
+
type: wer
|
26 |
+
value: 9.04
|
27 |
+
- name: Test CER
|
28 |
+
type: cer
|
29 |
+
value: 2.2
|
30 |
+
- name: Test WER (+LM)
|
31 |
+
type: wer
|
32 |
+
value: 6.75
|
33 |
+
- name: Test CER (+LM)
|
34 |
+
type: cer
|
35 |
+
value: 1.76
|
36 |
+
- task:
|
37 |
+
name: Automatic Speech Recognition
|
38 |
+
type: automatic-speech-recognition
|
39 |
+
dataset:
|
40 |
+
name: Robust Speech Event - Dev Data
|
41 |
+
type: speech-recognition-community-v2/dev_data
|
42 |
+
args: it
|
43 |
+
metrics:
|
44 |
+
- name: Dev WER
|
45 |
+
type: wer
|
46 |
+
value: 23.38
|
47 |
+
- name: Dev CER
|
48 |
+
type: cer
|
49 |
+
value: 9.41
|
50 |
+
- name: Dev WER (+LM)
|
51 |
+
type: wer
|
52 |
+
value: 15.84
|
53 |
+
- name: Dev CER (+LM)
|
54 |
+
type: cer
|
55 |
+
value: 8.93
|
56 |
+
- task:
|
57 |
+
name: Automatic Speech Recognition
|
58 |
+
type: automatic-speech-recognition
|
59 |
+
dataset:
|
60 |
+
name: Robust Speech Event - Test Data
|
61 |
+
type: speech-recognition-community-v2/eval_data
|
62 |
+
args: it
|
63 |
+
metrics:
|
64 |
+
- name: Test WER
|
65 |
+
type: wer
|
66 |
+
value: 18.34
|
67 |
+
---
|
68 |
+
|
69 |
+
# Fine-tuned XLS-R 1B model for speech recognition in Italian
|
70 |
+
|
71 |
+
Fine-tuned [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on Italian using the train and validation splits of [Common Voice 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0), [Multilingual TEDx](http://www.openslr.org/100), [Multilingual LibriSpeech](https://www.openslr.org/94/), and [Voxpopuli](https://github.com/facebookresearch/voxpopuli).
|
72 |
+
When using this model, make sure that your speech input is sampled at 16kHz.
|
73 |
+
|
74 |
+
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool, and thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :)
|
75 |
+
|
76 |
+
## Usage
|
77 |
+
|
78 |
+
Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library:
|
79 |
+
|
80 |
+
```python
|
81 |
+
from huggingsound import SpeechRecognitionModel
|
82 |
+
|
83 |
+
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-xls-r-1b-italian")
|
84 |
+
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
|
85 |
+
|
86 |
+
transcriptions = model.transcribe(audio_paths)
|
87 |
+
```
|
88 |
+
|
89 |
+
Writing your own inference script:
|
90 |
+
|
91 |
+
```python
|
92 |
+
import torch
|
93 |
+
import librosa
|
94 |
+
from datasets import load_dataset
|
95 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
96 |
+
|
97 |
+
LANG_ID = "it"
|
98 |
+
MODEL_ID = "jonatasgrosman/wav2vec2-xls-r-1b-italian"
|
99 |
+
SAMPLES = 10
|
100 |
+
|
101 |
+
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
|
102 |
+
|
103 |
+
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
104 |
+
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
105 |
+
|
106 |
+
# Preprocessing the datasets.
|
107 |
+
# We need to read the audio files as arrays
|
108 |
+
def speech_file_to_array_fn(batch):
|
109 |
+
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
|
110 |
+
batch["speech"] = speech_array
|
111 |
+
batch["sentence"] = batch["sentence"].upper()
|
112 |
+
return batch
|
113 |
+
|
114 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
115 |
+
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
116 |
+
|
117 |
+
with torch.no_grad():
|
118 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
119 |
+
|
120 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
121 |
+
predicted_sentences = processor.batch_decode(predicted_ids)
|
122 |
+
```
|
123 |
+
|
124 |
+
## Evaluation Commands
|
125 |
+
|
126 |
+
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
|
127 |
+
|
128 |
+
```bash
|
129 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-italian --dataset mozilla-foundation/common_voice_8_0 --config it --split test
|
130 |
+
```
|
131 |
+
|
132 |
+
2. To evaluate on `speech-recognition-community-v2/dev_data`
|
133 |
+
|
134 |
+
```bash
|
135 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-italian --dataset speech-recognition-community-v2/dev_data --config it --split validation --chunk_length_s 5.0 --stride_length_s 1.0
|
136 |
+
```
|
137 |
+
|
138 |
+
## Citation
|
139 |
+
If you want to cite this model you can use this:
|
140 |
+
|
141 |
+
```bibtex
|
142 |
+
@misc{grosman2021xlsr-1b-italian,
|
143 |
+
title={Fine-tuned {XLS-R} 1{B} model for speech recognition in {I}talian},
|
144 |
+
author={Grosman, Jonatas},
|
145 |
+
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-italian}},
|
146 |
+
year={2022}
|
147 |
+
}
|
148 |
+
```
|
alphabet.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"labels": ["", "<s>", "</s>", "\u2047", " ", "'", "-", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "\u00e0", "\u00e1", "\u00e8", "\u00e9", "\u00ec", "\u00ed", "\u00f2", "\u00f3", "\u00f9", "\u00fa"], "is_bpe": false}
|
config.json
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-xls-r-1b",
|
3 |
+
"activation_dropout": 0.05,
|
4 |
+
"adapter_kernel_size": 3,
|
5 |
+
"adapter_stride": 2,
|
6 |
+
"add_adapter": false,
|
7 |
+
"apply_spec_augment": true,
|
8 |
+
"architectures": [
|
9 |
+
"Wav2Vec2ForCTC"
|
10 |
+
],
|
11 |
+
"attention_dropout": 0.05,
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"classifier_proj_size": 256,
|
14 |
+
"codevector_dim": 1024,
|
15 |
+
"contrastive_logits_temperature": 0.1,
|
16 |
+
"conv_bias": true,
|
17 |
+
"conv_dim": [
|
18 |
+
512,
|
19 |
+
512,
|
20 |
+
512,
|
21 |
+
512,
|
22 |
+
512,
|
23 |
+
512,
|
24 |
+
512
|
25 |
+
],
|
26 |
+
"conv_kernel": [
|
27 |
+
10,
|
28 |
+
3,
|
29 |
+
3,
|
30 |
+
3,
|
31 |
+
3,
|
32 |
+
2,
|
33 |
+
2
|
34 |
+
],
|
35 |
+
"conv_stride": [
|
36 |
+
5,
|
37 |
+
2,
|
38 |
+
2,
|
39 |
+
2,
|
40 |
+
2,
|
41 |
+
2,
|
42 |
+
2
|
43 |
+
],
|
44 |
+
"ctc_loss_reduction": "mean",
|
45 |
+
"ctc_zero_infinity": false,
|
46 |
+
"diversity_loss_weight": 0.1,
|
47 |
+
"do_stable_layer_norm": true,
|
48 |
+
"eos_token_id": 2,
|
49 |
+
"feat_extract_activation": "gelu",
|
50 |
+
"feat_extract_dropout": 0.0,
|
51 |
+
"feat_extract_norm": "layer",
|
52 |
+
"feat_proj_dropout": 0.05,
|
53 |
+
"feat_quantizer_dropout": 0.0,
|
54 |
+
"final_dropout": 0.05,
|
55 |
+
"hidden_act": "gelu",
|
56 |
+
"hidden_dropout": 0.05,
|
57 |
+
"hidden_size": 1280,
|
58 |
+
"initializer_range": 0.02,
|
59 |
+
"intermediate_size": 5120,
|
60 |
+
"layer_norm_eps": 1e-05,
|
61 |
+
"layerdrop": 0.05,
|
62 |
+
"mask_feature_length": 10,
|
63 |
+
"mask_feature_min_masks": 0,
|
64 |
+
"mask_feature_prob": 0.0,
|
65 |
+
"mask_time_length": 10,
|
66 |
+
"mask_time_min_masks": 2,
|
67 |
+
"mask_time_prob": 0.05,
|
68 |
+
"model_type": "wav2vec2",
|
69 |
+
"num_adapter_layers": 3,
|
70 |
+
"num_attention_heads": 16,
|
71 |
+
"num_codevector_groups": 2,
|
72 |
+
"num_codevectors_per_group": 320,
|
73 |
+
"num_conv_pos_embedding_groups": 16,
|
74 |
+
"num_conv_pos_embeddings": 128,
|
75 |
+
"num_feat_extract_layers": 7,
|
76 |
+
"num_hidden_layers": 48,
|
77 |
+
"num_negatives": 100,
|
78 |
+
"output_hidden_size": 1280,
|
79 |
+
"pad_token_id": 0,
|
80 |
+
"proj_codevector_dim": 1024,
|
81 |
+
"tdnn_dilation": [
|
82 |
+
1,
|
83 |
+
2,
|
84 |
+
3,
|
85 |
+
1,
|
86 |
+
1
|
87 |
+
],
|
88 |
+
"tdnn_dim": [
|
89 |
+
512,
|
90 |
+
512,
|
91 |
+
512,
|
92 |
+
512,
|
93 |
+
1500
|
94 |
+
],
|
95 |
+
"tdnn_kernel": [
|
96 |
+
5,
|
97 |
+
3,
|
98 |
+
3,
|
99 |
+
1,
|
100 |
+
1
|
101 |
+
],
|
102 |
+
"torch_dtype": "float32",
|
103 |
+
"transformers_version": "4.16.0.dev0",
|
104 |
+
"use_weighted_layer_sum": false,
|
105 |
+
"vocab_size": 43,
|
106 |
+
"xvector_output_dim": 512
|
107 |
+
}
|
eval.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
from datasets import load_dataset, load_metric, Audio, Dataset
|
3 |
+
from transformers import pipeline, AutoFeatureExtractor, AutoTokenizer, AutoConfig, AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
|
4 |
+
import re
|
5 |
+
import torch
|
6 |
+
import argparse
|
7 |
+
from typing import Dict
|
8 |
+
|
9 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
10 |
+
""" DO NOT CHANGE. This function computes and logs the result metrics. """
|
11 |
+
|
12 |
+
log_outputs = args.log_outputs
|
13 |
+
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
14 |
+
|
15 |
+
# load metric
|
16 |
+
wer = load_metric("wer")
|
17 |
+
cer = load_metric("cer")
|
18 |
+
|
19 |
+
# compute metrics
|
20 |
+
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
|
21 |
+
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
|
22 |
+
|
23 |
+
# print & log results
|
24 |
+
result_str = (
|
25 |
+
f"WER: {wer_result}\n"
|
26 |
+
f"CER: {cer_result}"
|
27 |
+
)
|
28 |
+
print(result_str)
|
29 |
+
|
30 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
31 |
+
f.write(result_str)
|
32 |
+
|
33 |
+
# log all results in text file. Possibly interesting for analysis
|
34 |
+
if log_outputs is not None:
|
35 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
36 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
37 |
+
|
38 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
39 |
+
|
40 |
+
# mapping function to write output
|
41 |
+
def write_to_file(batch, i):
|
42 |
+
p.write(f"{i}" + "\n")
|
43 |
+
p.write(batch["prediction"] + "\n")
|
44 |
+
t.write(f"{i}" + "\n")
|
45 |
+
t.write(batch["target"] + "\n")
|
46 |
+
|
47 |
+
result.map(write_to_file, with_indices=True)
|
48 |
+
|
49 |
+
|
50 |
+
def normalize_text(text: str, invalid_chars_regex: str, to_lower: bool) -> str:
|
51 |
+
""" DO ADAPT FOR YOUR USE CASE. this function normalizes the target text. """
|
52 |
+
|
53 |
+
text = text.lower() if to_lower else text.upper()
|
54 |
+
|
55 |
+
text = re.sub(invalid_chars_regex, " ", text)
|
56 |
+
|
57 |
+
text = re.sub("\s+", " ", text).strip()
|
58 |
+
|
59 |
+
return text
|
60 |
+
|
61 |
+
|
62 |
+
def main(args):
|
63 |
+
# load dataset
|
64 |
+
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
65 |
+
|
66 |
+
# for testing: only process the first two examples as a test
|
67 |
+
# dataset = dataset.select(range(10))
|
68 |
+
|
69 |
+
# load processor
|
70 |
+
if args.greedy:
|
71 |
+
processor = Wav2Vec2Processor.from_pretrained(args.model_id)
|
72 |
+
decoder = None
|
73 |
+
else:
|
74 |
+
processor = Wav2Vec2ProcessorWithLM.from_pretrained(args.model_id)
|
75 |
+
decoder = processor.decoder
|
76 |
+
|
77 |
+
feature_extractor = processor.feature_extractor
|
78 |
+
tokenizer = processor.tokenizer
|
79 |
+
|
80 |
+
# resample audio
|
81 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=feature_extractor.sampling_rate))
|
82 |
+
|
83 |
+
# load eval pipeline
|
84 |
+
if args.device is None:
|
85 |
+
args.device = 0 if torch.cuda.is_available() else -1
|
86 |
+
|
87 |
+
config = AutoConfig.from_pretrained(args.model_id)
|
88 |
+
model = AutoModelForCTC.from_pretrained(args.model_id)
|
89 |
+
|
90 |
+
#asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
|
91 |
+
asr = pipeline("automatic-speech-recognition", config=config, model=model, tokenizer=tokenizer,
|
92 |
+
feature_extractor=feature_extractor, decoder=decoder, device=args.device)
|
93 |
+
|
94 |
+
# build normalizer config
|
95 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_id)
|
96 |
+
tokens = [x for x in tokenizer.convert_ids_to_tokens(range(0, tokenizer.vocab_size))]
|
97 |
+
special_tokens = [
|
98 |
+
tokenizer.pad_token, tokenizer.word_delimiter_token,
|
99 |
+
tokenizer.unk_token, tokenizer.bos_token,
|
100 |
+
tokenizer.eos_token,
|
101 |
+
]
|
102 |
+
non_special_tokens = [x for x in tokens if x not in special_tokens]
|
103 |
+
invalid_chars_regex = f"[^\s{re.escape(''.join(set(non_special_tokens)))}]"
|
104 |
+
normalize_to_lower = False
|
105 |
+
for token in non_special_tokens:
|
106 |
+
if token.isalpha() and token.islower():
|
107 |
+
normalize_to_lower = True
|
108 |
+
break
|
109 |
+
|
110 |
+
# map function to decode audio
|
111 |
+
def map_to_pred(batch, args=args, asr=asr, invalid_chars_regex=invalid_chars_regex, normalize_to_lower=normalize_to_lower):
|
112 |
+
prediction = asr(batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s)
|
113 |
+
|
114 |
+
batch["prediction"] = prediction["text"]
|
115 |
+
batch["target"] = normalize_text(batch["sentence"], invalid_chars_regex, normalize_to_lower)
|
116 |
+
return batch
|
117 |
+
|
118 |
+
# run inference on all examples
|
119 |
+
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
120 |
+
|
121 |
+
# filtering out empty targets
|
122 |
+
result = result.filter(lambda example: example["target"] != "")
|
123 |
+
|
124 |
+
# compute and log_results
|
125 |
+
# do not change function below
|
126 |
+
log_results(result, args)
|
127 |
+
|
128 |
+
|
129 |
+
if __name__ == "__main__":
|
130 |
+
parser = argparse.ArgumentParser()
|
131 |
+
|
132 |
+
parser.add_argument(
|
133 |
+
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
134 |
+
)
|
135 |
+
parser.add_argument(
|
136 |
+
"--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
|
137 |
+
)
|
138 |
+
parser.add_argument(
|
139 |
+
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
140 |
+
)
|
141 |
+
parser.add_argument(
|
142 |
+
"--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
|
143 |
+
)
|
144 |
+
parser.add_argument(
|
145 |
+
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds."
|
146 |
+
)
|
147 |
+
parser.add_argument(
|
148 |
+
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds."
|
149 |
+
)
|
150 |
+
parser.add_argument(
|
151 |
+
"--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
|
152 |
+
)
|
153 |
+
parser.add_argument(
|
154 |
+
"--greedy", action='store_true', help="If defined, the LM will be ignored during inference."
|
155 |
+
)
|
156 |
+
parser.add_argument(
|
157 |
+
"--device",
|
158 |
+
type=int,
|
159 |
+
default=None,
|
160 |
+
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
|
161 |
+
)
|
162 |
+
args = parser.parse_args()
|
163 |
+
|
164 |
+
main(args)
|
full_eval.sh
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CV 8 - TEST
|
2 |
+
|
3 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-italian --dataset mozilla-foundation/common_voice_8_0 --config it --split test --log_outputs --greedy
|
4 |
+
mv log_mozilla-foundation_common_voice_8_0_it_test_predictions.txt log_mozilla-foundation_common_voice_8_0_it_test_predictions_greedy.txt
|
5 |
+
mv mozilla-foundation_common_voice_8_0_it_test_eval_results.txt mozilla-foundation_common_voice_8_0_it_test_eval_results_greedy.txt
|
6 |
+
|
7 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-italian --dataset mozilla-foundation/common_voice_8_0 --config it --split test --log_outputs
|
8 |
+
|
9 |
+
# HF EVENT - DEV
|
10 |
+
|
11 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-italian --dataset speech-recognition-community-v2/dev_data --config it --split validation --chunk_length_s 5.0 --stride_length_s 1.0 --log_outputs --greedy
|
12 |
+
mv log_speech-recognition-community-v2_dev_data_it_validation_predictions.txt log_speech-recognition-community-v2_dev_data_it_validation_predictions_greedy.txt
|
13 |
+
mv speech-recognition-community-v2_dev_data_it_validation_eval_results.txt speech-recognition-community-v2_dev_data_it_validation_eval_results_greedy.txt
|
14 |
+
|
15 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-italian --dataset speech-recognition-community-v2/dev_data --config it --split validation --chunk_length_s 5.0 --stride_length_s 1.0 --log_outputs
|
language_model/2gram_It_Hum_no_df1.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50c1560a01c4ff13ab253ffc485be66df9c80621e20a7aea52a0377a3804c8b1
|
3 |
+
size 51090
|
language_model/attrs.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"alpha": 0.5, "beta": 1.5, "unk_score_offset": -10.0, "score_boundary": true}
|
language_model/unigrams.txt
ADDED
@@ -0,0 +1,757 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
</s>
|
2 |
+
<s>
|
3 |
+
a
|
4 |
+
ablalisto
|
5 |
+
ablelisto
|
6 |
+
ablimione
|
7 |
+
acco
|
8 |
+
aec
|
9 |
+
aestrada
|
10 |
+
agnamisa
|
11 |
+
al
|
12 |
+
alba
|
13 |
+
alc
|
14 |
+
alce
|
15 |
+
alceli
|
16 |
+
alcelis
|
17 |
+
alcelisisisotodoto
|
18 |
+
alcelista
|
19 |
+
alcelisto
|
20 |
+
alcelsivi
|
21 |
+
alcesti
|
22 |
+
alcestio
|
23 |
+
alcestito
|
24 |
+
alcezio
|
25 |
+
alchelisto
|
26 |
+
alecisto
|
27 |
+
alga
|
28 |
+
ananca
|
29 |
+
anca
|
30 |
+
anci
|
31 |
+
angelo
|
32 |
+
angola
|
33 |
+
angolo
|
34 |
+
anno
|
35 |
+
annocole
|
36 |
+
appartamento
|
37 |
+
appertamento
|
38 |
+
apportamento
|
39 |
+
appu
|
40 |
+
appunta
|
41 |
+
appuntamento
|
42 |
+
aprile
|
43 |
+
ar
|
44 |
+
arlo
|
45 |
+
arni
|
46 |
+
arrosamento
|
47 |
+
arrossa
|
48 |
+
arrossamento
|
49 |
+
arvi
|
50 |
+
aspedale
|
51 |
+
astate
|
52 |
+
astro
|
53 |
+
attesa
|
54 |
+
avviso
|
55 |
+
b
|
56 |
+
ba
|
57 |
+
babbile
|
58 |
+
bacio
|
59 |
+
badile
|
60 |
+
bale
|
61 |
+
bales
|
62 |
+
balestra
|
63 |
+
bambina
|
64 |
+
bambino
|
65 |
+
ban
|
66 |
+
bandito
|
67 |
+
banse
|
68 |
+
banzione
|
69 |
+
barc
|
70 |
+
baril
|
71 |
+
barile
|
72 |
+
basilico
|
73 |
+
bava
|
74 |
+
bavo
|
75 |
+
be
|
76 |
+
begnole
|
77 |
+
bepe
|
78 |
+
ber
|
79 |
+
bersa
|
80 |
+
bersaglio
|
81 |
+
bestra
|
82 |
+
bi
|
83 |
+
bia
|
84 |
+
bian
|
85 |
+
bianca
|
86 |
+
bicicletta
|
87 |
+
bigliaso
|
88 |
+
bignalo
|
89 |
+
bignas
|
90 |
+
bignaso
|
91 |
+
bignolia
|
92 |
+
bin
|
93 |
+
binboggio
|
94 |
+
binca
|
95 |
+
bincolo
|
96 |
+
binoccolo
|
97 |
+
binocolo
|
98 |
+
bis
|
99 |
+
bismacco
|
100 |
+
bismaco
|
101 |
+
bismag
|
102 |
+
bismaggo
|
103 |
+
bismago
|
104 |
+
bismo
|
105 |
+
bismoggo
|
106 |
+
bitto
|
107 |
+
bivio
|
108 |
+
bo
|
109 |
+
bodifi
|
110 |
+
bodifico
|
111 |
+
bole
|
112 |
+
boleggio
|
113 |
+
bolifi
|
114 |
+
bolifico
|
115 |
+
boni
|
116 |
+
bonifico
|
117 |
+
bor
|
118 |
+
borte
|
119 |
+
bu
|
120 |
+
bufebbu
|
121 |
+
bufebe
|
122 |
+
bufebu
|
123 |
+
buna
|
124 |
+
buongiorno
|
125 |
+
c
|
126 |
+
ca
|
127 |
+
cafelat
|
128 |
+
caff?
|
129 |
+
caffattiera
|
130 |
+
caffel
|
131 |
+
caffelatte
|
132 |
+
caffetteria
|
133 |
+
caffettiera
|
134 |
+
caglia
|
135 |
+
cagliavaro
|
136 |
+
cagliralo
|
137 |
+
caglirano
|
138 |
+
caglirilo
|
139 |
+
caglivaro
|
140 |
+
calderone
|
141 |
+
caliralo
|
142 |
+
callivaro
|
143 |
+
camer
|
144 |
+
camera
|
145 |
+
cammera
|
146 |
+
campagna
|
147 |
+
camposquadra
|
148 |
+
can
|
149 |
+
candidato
|
150 |
+
candito
|
151 |
+
canenfrosto
|
152 |
+
canentrosto
|
153 |
+
canf
|
154 |
+
canfo
|
155 |
+
canfosto
|
156 |
+
canfostro
|
157 |
+
canfro
|
158 |
+
canfronsto
|
159 |
+
canfrosto
|
160 |
+
canfrostro
|
161 |
+
caniele
|
162 |
+
canile
|
163 |
+
canindato
|
164 |
+
cannefrosto
|
165 |
+
cantapesta
|
166 |
+
cantello
|
167 |
+
capoadra
|
168 |
+
capocla
|
169 |
+
capoclass
|
170 |
+
capoclasse
|
171 |
+
capoquardra
|
172 |
+
caposcuola
|
173 |
+
caposquadra
|
174 |
+
caposquodra
|
175 |
+
cappello
|
176 |
+
capuscola
|
177 |
+
car
|
178 |
+
care
|
179 |
+
caregresto
|
180 |
+
cariereta
|
181 |
+
carletino
|
182 |
+
carli
|
183 |
+
carnevale
|
184 |
+
carnivoro
|
185 |
+
cart
|
186 |
+
cartapesta
|
187 |
+
cartegresto
|
188 |
+
cartellino
|
189 |
+
cartello
|
190 |
+
cartellone
|
191 |
+
cartepes
|
192 |
+
cartoncino
|
193 |
+
carvelale
|
194 |
+
cas
|
195 |
+
casa
|
196 |
+
casatello
|
197 |
+
caso
|
198 |
+
cassaforte
|
199 |
+
casse
|
200 |
+
cassetto
|
201 |
+
castello
|
202 |
+
cava
|
203 |
+
ce
|
204 |
+
cedicare
|
205 |
+
cegli
|
206 |
+
cegliar
|
207 |
+
cegliarate
|
208 |
+
cegliarte
|
209 |
+
cegligrate
|
210 |
+
ceglira
|
211 |
+
ceglirate
|
212 |
+
ceglireta
|
213 |
+
celgliarate
|
214 |
+
celia
|
215 |
+
cellirate
|
216 |
+
cellire
|
217 |
+
cen
|
218 |
+
chedi
|
219 |
+
chedimare
|
220 |
+
chedinare
|
221 |
+
chegliare
|
222 |
+
cheglirate
|
223 |
+
cher
|
224 |
+
chetinere
|
225 |
+
chettinere
|
226 |
+
chevin
|
227 |
+
chia
|
228 |
+
chinadire
|
229 |
+
chindiare
|
230 |
+
ciglilate
|
231 |
+
cioco
|
232 |
+
co
|
233 |
+
codi
|
234 |
+
codice
|
235 |
+
cofa
|
236 |
+
cofano
|
237 |
+
cofe
|
238 |
+
coffetteria
|
239 |
+
coglieralo
|
240 |
+
col
|
241 |
+
colderone
|
242 |
+
colto
|
243 |
+
comenta
|
244 |
+
cometa
|
245 |
+
compagna
|
246 |
+
compagno
|
247 |
+
compelo
|
248 |
+
con
|
249 |
+
condidato
|
250 |
+
condito
|
251 |
+
confettiera
|
252 |
+
confi
|
253 |
+
confrosto
|
254 |
+
contanpesta
|
255 |
+
coppe
|
256 |
+
cor
|
257 |
+
cora
|
258 |
+
corageso
|
259 |
+
coragnesto
|
260 |
+
coragresto
|
261 |
+
core
|
262 |
+
coregesta
|
263 |
+
coregnesta
|
264 |
+
coregresta
|
265 |
+
coregresto
|
266 |
+
coritta
|
267 |
+
cornevale
|
268 |
+
corrita
|
269 |
+
cortapesta
|
270 |
+
corvegresta
|
271 |
+
costro
|
272 |
+
cotro
|
273 |
+
cuore
|
274 |
+
custro
|
275 |
+
da
|
276 |
+
dabe
|
277 |
+
dabile
|
278 |
+
dadile
|
279 |
+
dales
|
280 |
+
dandi
|
281 |
+
danzione
|
282 |
+
dape
|
283 |
+
das
|
284 |
+
dasilico
|
285 |
+
dava
|
286 |
+
dazione
|
287 |
+
de
|
288 |
+
degnole
|
289 |
+
depe
|
290 |
+
dersagl
|
291 |
+
destr
|
292 |
+
destra
|
293 |
+
dete
|
294 |
+
dette
|
295 |
+
di
|
296 |
+
dici
|
297 |
+
dicicletta
|
298 |
+
diga
|
299 |
+
dignaso
|
300 |
+
dilo
|
301 |
+
dis
|
302 |
+
dismaggo
|
303 |
+
dismoggo
|
304 |
+
dismogo
|
305 |
+
diva
|
306 |
+
divio
|
307 |
+
do
|
308 |
+
domenica
|
309 |
+
donifico
|
310 |
+
dor
|
311 |
+
dorca
|
312 |
+
dorizza
|
313 |
+
du
|
314 |
+
duna
|
315 |
+
e
|
316 |
+
ec
|
317 |
+
ecco
|
318 |
+
egnamisa
|
319 |
+
egnomisa
|
320 |
+
egnomista
|
321 |
+
elce
|
322 |
+
esetate
|
323 |
+
espedale
|
324 |
+
espegale
|
325 |
+
estate
|
326 |
+
etteza
|
327 |
+
f
|
328 |
+
fa
|
329 |
+
fafa
|
330 |
+
faga
|
331 |
+
fal
|
332 |
+
fallo
|
333 |
+
fame
|
334 |
+
fantasma
|
335 |
+
far
|
336 |
+
fard
|
337 |
+
farde
|
338 |
+
farfalla
|
339 |
+
farfalle
|
340 |
+
farmacio
|
341 |
+
fatto
|
342 |
+
fav
|
343 |
+
fava
|
344 |
+
felmaglio
|
345 |
+
feressa
|
346 |
+
fermaglio
|
347 |
+
fevubo
|
348 |
+
ff
|
349 |
+
fff
|
350 |
+
fi
|
351 |
+
figl
|
352 |
+
figlio
|
353 |
+
fine
|
354 |
+
finestra
|
355 |
+
finistra
|
356 |
+
fl
|
357 |
+
flavestro
|
358 |
+
flenastro
|
359 |
+
flene
|
360 |
+
flenestro
|
361 |
+
flenetrego
|
362 |
+
flenstro
|
363 |
+
flu
|
364 |
+
flunestro
|
365 |
+
flustro
|
366 |
+
fo
|
367 |
+
foca
|
368 |
+
foce
|
369 |
+
foga
|
370 |
+
foglia
|
371 |
+
foglio
|
372 |
+
fonagio
|
373 |
+
foneggio
|
374 |
+
fore
|
375 |
+
forfalle
|
376 |
+
fr
|
377 |
+
frate
|
378 |
+
fratello
|
379 |
+
fresemma
|
380 |
+
fri
|
381 |
+
friermace
|
382 |
+
frima
|
383 |
+
frimace
|
384 |
+
frimache
|
385 |
+
frimasce
|
386 |
+
frimece
|
387 |
+
frimoce
|
388 |
+
frostro
|
389 |
+
fru
|
390 |
+
frutta
|
391 |
+
fu
|
392 |
+
fube
|
393 |
+
fugiaco
|
394 |
+
fupebo
|
395 |
+
fuvebu
|
396 |
+
ga
|
397 |
+
gadliralo
|
398 |
+
gagliralo
|
399 |
+
gairalo
|
400 |
+
gal
|
401 |
+
galgi
|
402 |
+
galgi?
|
403 |
+
galialo
|
404 |
+
gatto
|
405 |
+
ge
|
406 |
+
genitore
|
407 |
+
gessetto
|
408 |
+
gi
|
409 |
+
gi?
|
410 |
+
gin
|
411 |
+
gio
|
412 |
+
gioco
|
413 |
+
gior
|
414 |
+
giossetto
|
415 |
+
giostra
|
416 |
+
girondolo
|
417 |
+
giroton
|
418 |
+
girotondo
|
419 |
+
girotonondo
|
420 |
+
giustra
|
421 |
+
glio
|
422 |
+
glioveglio
|
423 |
+
gliovelo
|
424 |
+
glirate
|
425 |
+
glofano
|
426 |
+
glofeno
|
427 |
+
glove
|
428 |
+
glovello
|
429 |
+
glovelo
|
430 |
+
gloveno
|
431 |
+
gloverno
|
432 |
+
gnalo
|
433 |
+
go
|
434 |
+
gresto
|
435 |
+
grimace
|
436 |
+
ignemisa
|
437 |
+
ilnegisa
|
438 |
+
inlesa
|
439 |
+
inquinamento
|
440 |
+
insegnamento
|
441 |
+
insegnamentorofe
|
442 |
+
insegne
|
443 |
+
iovelo
|
444 |
+
isegnmisa
|
445 |
+
istro
|
446 |
+
isvelone
|
447 |
+
la
|
448 |
+
laba
|
449 |
+
lad
|
450 |
+
lada
|
451 |
+
lana
|
452 |
+
lars
|
453 |
+
larse
|
454 |
+
lastra
|
455 |
+
lavoro
|
456 |
+
le
|
457 |
+
les
|
458 |
+
lesciacode
|
459 |
+
lesciacope
|
460 |
+
linea
|
461 |
+
listo
|
462 |
+
lo
|
463 |
+
loanovarro
|
464 |
+
loba
|
465 |
+
lonacio
|
466 |
+
lonaggio
|
467 |
+
lonagio
|
468 |
+
longio
|
469 |
+
lorse
|
470 |
+
lu
|
471 |
+
lurto
|
472 |
+
m
|
473 |
+
ma
|
474 |
+
macchidante
|
475 |
+
machi
|
476 |
+
machidante
|
477 |
+
maestra
|
478 |
+
mano
|
479 |
+
mar
|
480 |
+
marchi
|
481 |
+
marg
|
482 |
+
marghe
|
483 |
+
margherita
|
484 |
+
marghrerita
|
485 |
+
mas
|
486 |
+
mascere
|
487 |
+
maschera
|
488 |
+
mascheri
|
489 |
+
mase
|
490 |
+
matta
|
491 |
+
matto
|
492 |
+
me
|
493 |
+
medaglia
|
494 |
+
medaglietta
|
495 |
+
medegliatta
|
496 |
+
mela
|
497 |
+
meno
|
498 |
+
meschera
|
499 |
+
mese
|
500 |
+
mezza
|
501 |
+
mezzogior
|
502 |
+
mezzogiorno
|
503 |
+
mi
|
504 |
+
mina
|
505 |
+
mine
|
506 |
+
minestra
|
507 |
+
mini
|
508 |
+
ministra
|
509 |
+
minitra
|
510 |
+
mis
|
511 |
+
mo
|
512 |
+
mondo
|
513 |
+
monondo
|
514 |
+
montagna
|
515 |
+
mostra
|
516 |
+
motocicletta
|
517 |
+
munviglio
|
518 |
+
munviio
|
519 |
+
muviglio
|
520 |
+
na
|
521 |
+
nachipante
|
522 |
+
naso
|
523 |
+
natura
|
524 |
+
nisciacope
|
525 |
+
nisciocope
|
526 |
+
no
|
527 |
+
nocipante
|
528 |
+
nonna
|
529 |
+
nonno
|
530 |
+
norci
|
531 |
+
notte
|
532 |
+
nu
|
533 |
+
nudo
|
534 |
+
nurto
|
535 |
+
nutro
|
536 |
+
nutto
|
537 |
+
nuvola
|
538 |
+
o
|
539 |
+
obblimione
|
540 |
+
obli
|
541 |
+
oblibione
|
542 |
+
oblie
|
543 |
+
oblimi
|
544 |
+
oblimione
|
545 |
+
oblimo
|
546 |
+
offesa
|
547 |
+
oggi
|
548 |
+
ognamise
|
549 |
+
oignomisa
|
550 |
+
olblimione
|
551 |
+
oli
|
552 |
+
olimione
|
553 |
+
olimo
|
554 |
+
oppinione
|
555 |
+
oppuntame
|
556 |
+
orlo
|
557 |
+
orsamento
|
558 |
+
ospedale
|
559 |
+
ostro
|
560 |
+
p
|
561 |
+
pa
|
562 |
+
pace
|
563 |
+
pachetenta
|
564 |
+
pales
|
565 |
+
palestra
|
566 |
+
pane
|
567 |
+
par
|
568 |
+
parola
|
569 |
+
pasce
|
570 |
+
patto
|
571 |
+
pe
|
572 |
+
pelipo
|
573 |
+
pen
|
574 |
+
pentito
|
575 |
+
per
|
576 |
+
pers
|
577 |
+
persemma
|
578 |
+
perso
|
579 |
+
persona
|
580 |
+
personale
|
581 |
+
perzzemolo
|
582 |
+
pesc
|
583 |
+
pesce
|
584 |
+
pescespada
|
585 |
+
pesche
|
586 |
+
pez
|
587 |
+
piastra
|
588 |
+
pista
|
589 |
+
po
|
590 |
+
pochetaenta
|
591 |
+
pochetenta
|
592 |
+
poli
|
593 |
+
polino
|
594 |
+
polipo
|
595 |
+
pomo
|
596 |
+
pomodoro
|
597 |
+
por
|
598 |
+
porita
|
599 |
+
poritta
|
600 |
+
potto
|
601 |
+
pradeglia
|
602 |
+
pran
|
603 |
+
pranzo
|
604 |
+
pre
|
605 |
+
predeglia
|
606 |
+
premme
|
607 |
+
premmes
|
608 |
+
premmesa
|
609 |
+
presa
|
610 |
+
presamma
|
611 |
+
prese
|
612 |
+
presemma
|
613 |
+
preveva
|
614 |
+
prezze
|
615 |
+
prezzemolo
|
616 |
+
prezzo
|
617 |
+
probeglia
|
618 |
+
prodeglia
|
619 |
+
prodeia
|
620 |
+
prodiglia
|
621 |
+
pronto
|
622 |
+
puntamento
|
623 |
+
radio
|
624 |
+
ranviglio
|
625 |
+
ranvioglio
|
626 |
+
raviglio
|
627 |
+
ri
|
628 |
+
riposta
|
629 |
+
ris
|
630 |
+
risagnera
|
631 |
+
risegnara
|
632 |
+
risognefa
|
633 |
+
risposta
|
634 |
+
ristogefa
|
635 |
+
risugne
|
636 |
+
risugnela
|
637 |
+
ro
|
638 |
+
rofe
|
639 |
+
ros
|
640 |
+
rossetto
|
641 |
+
rove
|
642 |
+
rovello
|
643 |
+
ru
|
644 |
+
rufebu
|
645 |
+
rufelu
|
646 |
+
sa
|
647 |
+
salvelone
|
648 |
+
sarmelone
|
649 |
+
sarvellone
|
650 |
+
sarvelone
|
651 |
+
save
|
652 |
+
scarpa
|
653 |
+
seca
|
654 |
+
secca
|
655 |
+
seglirate
|
656 |
+
sforta
|
657 |
+
sfrilo
|
658 |
+
sglofeno
|
659 |
+
si
|
660 |
+
signora
|
661 |
+
sinistra
|
662 |
+
sinistre
|
663 |
+
sinora
|
664 |
+
sirfelone
|
665 |
+
sirvellone
|
666 |
+
sirvelone
|
667 |
+
sisagnera
|
668 |
+
sisvelone
|
669 |
+
so
|
670 |
+
soce
|
671 |
+
soggiorno
|
672 |
+
sogno
|
673 |
+
soigiorno
|
674 |
+
sollevamento
|
675 |
+
sonviglio
|
676 |
+
sonviio
|
677 |
+
sottori
|
678 |
+
sottra
|
679 |
+
sottraghe
|
680 |
+
sponto
|
681 |
+
spor
|
682 |
+
ss
|
683 |
+
st
|
684 |
+
stage
|
685 |
+
star
|
686 |
+
ste
|
687 |
+
sterada
|
688 |
+
sto
|
689 |
+
str
|
690 |
+
stra
|
691 |
+
strada
|
692 |
+
strage
|
693 |
+
strano
|
694 |
+
strato
|
695 |
+
stre
|
696 |
+
strega
|
697 |
+
strillo
|
698 |
+
strilo
|
699 |
+
strin
|
700 |
+
stringa
|
701 |
+
strizza
|
702 |
+
stro
|
703 |
+
strof
|
704 |
+
strofa
|
705 |
+
strova
|
706 |
+
sve
|
707 |
+
sveglia
|
708 |
+
t
|
709 |
+
taglia
|
710 |
+
tanfo
|
711 |
+
tele
|
712 |
+
telefono
|
713 |
+
ten
|
714 |
+
tenantacolo
|
715 |
+
tenta
|
716 |
+
tentaco
|
717 |
+
tentacoli
|
718 |
+
tentacolo
|
719 |
+
testa
|
720 |
+
ti
|
721 |
+
tigl
|
722 |
+
tiglio
|
723 |
+
tiio
|
724 |
+
tizio
|
725 |
+
trano
|
726 |
+
tucca
|
727 |
+
tul
|
728 |
+
turlo
|
729 |
+
ustra
|
730 |
+
ustro
|
731 |
+
v
|
732 |
+
valo
|
733 |
+
vaso
|
734 |
+
ve
|
735 |
+
veglia
|
736 |
+
ventaglio
|
737 |
+
ventaio
|
738 |
+
versaglio
|
739 |
+
vetaglio
|
740 |
+
vi
|
741 |
+
vicino
|
742 |
+
vilo
|
743 |
+
vizio
|
744 |
+
voce
|
745 |
+
voglia
|
746 |
+
volo
|
747 |
+
vu
|
748 |
+
vube
|
749 |
+
vufebe
|
750 |
+
vufebo
|
751 |
+
vufebu
|
752 |
+
vufedu
|
753 |
+
vufpebo
|
754 |
+
vufube
|
755 |
+
vure
|
756 |
+
vusciacope
|
757 |
+
vuso
|
log_mozilla-foundation_common_voice_8_0_it_test_predictions.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_mozilla-foundation_common_voice_8_0_it_test_predictions_greedy.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_mozilla-foundation_common_voice_8_0_it_test_targets.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_mozilla-foundation_common_voice_8_0_it_test_targets_greedy.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_speech-recognition-community-v2_dev_data_it_validation_predictions.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_speech-recognition-community-v2_dev_data_it_validation_predictions_greedy.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_speech-recognition-community-v2_dev_data_it_validation_targets.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
mozilla-foundation_common_voice_8_0_it_test_eval_results.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.0675129084844723
|
2 |
+
CER: 0.01761353561922042
|
mozilla-foundation_common_voice_8_0_it_test_eval_results_greedy.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.09043783123819138
|
2 |
+
CER: 0.022088713826821264
|
preprocessor_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 0,
|
7 |
+
"processor_class": "Wav2Vec2ProcessorWithLM",
|
8 |
+
"return_attention_mask": true,
|
9 |
+
"sampling_rate": 16000
|
10 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6330c0527196c61ba8df8fec82234a6e74600018d497018d072d33d4c6b315d2
|
3 |
+
size 3850533041
|
special_tokens_map.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"eos_token": "</s>",
|
4 |
+
"pad_token": "<pad>",
|
5 |
+
"unk_token": "<unk>"
|
6 |
+
}
|
speech-recognition-community-v2_dev_data_it_validation_eval_results.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.15843144982511453
|
2 |
+
CER: 0.08932029194181024
|
speech-recognition-community-v2_dev_data_it_validation_eval_results_greedy.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.23380462091728657
|
2 |
+
CER: 0.09411978882213727
|
tokenizer_config.json
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<pad>",
|
5 |
+
"lstrip": true,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": true,
|
8 |
+
"single_word": false,
|
9 |
+
"special": false
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<s>",
|
13 |
+
"lstrip": true,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": true,
|
16 |
+
"single_word": false,
|
17 |
+
"special": false
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": true,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": true,
|
24 |
+
"single_word": false,
|
25 |
+
"special": false
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": true,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": true,
|
32 |
+
"single_word": false,
|
33 |
+
"special": false
|
34 |
+
}
|
35 |
+
},
|
36 |
+
"bos_token": "<s>",
|
37 |
+
"clean_up_tokenization_spaces": true,
|
38 |
+
"do_lower_case": false,
|
39 |
+
"eos_token": "</s>",
|
40 |
+
"model_max_length": 1000000000000000019884624838656,
|
41 |
+
"pad_token": "<pad>",
|
42 |
+
"processor_class": "Wav2Vec2ProcessorWithLM",
|
43 |
+
"replace_word_delimiter_char": " ",
|
44 |
+
"target_lang": null,
|
45 |
+
"tokenizer_class": "Wav2Vec2CTCTokenizer",
|
46 |
+
"unk_token": "<unk>",
|
47 |
+
"word_delimiter_token": "|"
|
48 |
+
}
|
vocab.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"'": 5,
|
3 |
+
"-": 6,
|
4 |
+
"</s>": 2,
|
5 |
+
"<pad>": 0,
|
6 |
+
"<s>": 1,
|
7 |
+
"<unk>": 3,
|
8 |
+
"a": 7,
|
9 |
+
"b": 8,
|
10 |
+
"c": 9,
|
11 |
+
"d": 10,
|
12 |
+
"e": 11,
|
13 |
+
"f": 12,
|
14 |
+
"g": 13,
|
15 |
+
"h": 14,
|
16 |
+
"i": 15,
|
17 |
+
"j": 16,
|
18 |
+
"k": 17,
|
19 |
+
"l": 18,
|
20 |
+
"m": 19,
|
21 |
+
"n": 20,
|
22 |
+
"o": 21,
|
23 |
+
"p": 22,
|
24 |
+
"q": 23,
|
25 |
+
"r": 24,
|
26 |
+
"s": 25,
|
27 |
+
"t": 26,
|
28 |
+
"u": 27,
|
29 |
+
"v": 28,
|
30 |
+
"w": 29,
|
31 |
+
"x": 30,
|
32 |
+
"y": 31,
|
33 |
+
"z": 32,
|
34 |
+
"|": 4,
|
35 |
+
"à": 33,
|
36 |
+
"á": 34,
|
37 |
+
"è": 35,
|
38 |
+
"é": 36,
|
39 |
+
"ì": 37,
|
40 |
+
"í": 38,
|
41 |
+
"ò": 39,
|
42 |
+
"ó": 40,
|
43 |
+
"ù": 41,
|
44 |
+
"ú": 42
|
45 |
+
}
|