File size: 2,485 Bytes
e7c544d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: apache-2.0
base_model: t5-base
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: t5-base-finetuned-ancient_chinese-to-modern_chinese
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-base-finetuned-ancient_chinese-to-modern_chinese

This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1221
- Bleu: 84.7874
- Gen Len: 7.4143

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Bleu    | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 0.1833        | 1.0   | 716   | 0.1371          | 83.007  | 7.5431  |
| 0.1528        | 2.0   | 1432  | 0.1286          | 84.1978 | 7.4289  |
| 0.1414        | 3.0   | 2148  | 0.1279          | 84.8682 | 7.4034  |
| 0.131         | 4.0   | 2864  | 0.1252          | 84.6009 | 7.4209  |
| 0.1298        | 5.0   | 3580  | 0.1250          | 84.7541 | 7.4146  |
| 0.1325        | 6.0   | 4296  | 0.1233          | 85.0001 | 7.4097  |
| 0.1284        | 7.0   | 5012  | 0.1235          | 84.7152 | 7.4122  |
| 0.1315        | 8.0   | 5728  | 0.1232          | 85.2833 | 7.4097  |
| 0.1276        | 9.0   | 6444  | 0.1231          | 84.7562 | 7.4104  |
| 0.1259        | 10.0  | 7160  | 0.1226          | 84.684  | 7.4139  |
| 0.1259        | 11.0  | 7876  | 0.1216          | 84.8757 | 7.4129  |
| 0.1257        | 12.0  | 8592  | 0.1221          | 84.6458 | 7.4143  |
| 0.1233        | 13.0  | 9308  | 0.1220          | 84.8371 | 7.4122  |
| 0.1217        | 14.0  | 10024 | 0.1218          | 84.7984 | 7.4115  |
| 0.1253        | 15.0  | 10740 | 0.1221          | 84.7874 | 7.4143  |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1