DanteAl97 commited on
Commit
f3c0d07
1 Parent(s): 7e0dfe9

Upload 11 files

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: sarvamai/OpenHathi-7B-Hi-v0.1-Base
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
adapter_config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "sarvamai/OpenHathi-7B-Hi-v0.1-Base",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "down_proj",
24
+ "up_proj",
25
+ "gate_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM",
28
+ "use_dora": false,
29
+ "use_rslora": false
30
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a79365868e96dbd30865018cc8e0ec6ae00dd78c422c7155b448a0f25ea5785f
3
+ size 92824216
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd62859726d46c7cab01c6b8c28886ac32364304c4811b5be12790acd36300ed
3
+ size 47209298
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46290c18c3b3920166595e51bd3f5c6fc1585185680dcfaaf67a05fc1901e325
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50875594b892047c8e46a61b82a18becc1a9e9c9af6ce75ec5a292af0d5a8cd2
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": true,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32000": {
30
+ "content": "[PAD]",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ }
37
+ },
38
+ "bos_token": "<s>",
39
+ "clean_up_tokenization_spaces": false,
40
+ "eos_token": "</s>",
41
+ "legacy": false,
42
+ "model_max_length": 1000000000000000019884624838656,
43
+ "pad_token": "<unk>",
44
+ "sp_model_kwargs": {},
45
+ "spaces_between_special_tokens": false,
46
+ "tokenizer_class": "LlamaTokenizer",
47
+ "unk_token": "<unk>",
48
+ "use_default_system_prompt": false
49
+ }
trainer_state.json ADDED
@@ -0,0 +1,771 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.572701541042038,
5
+ "eval_steps": 100,
6
+ "global_step": 5000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03,
13
+ "grad_norm": 0.49666959047317505,
14
+ "learning_rate": 0.0001,
15
+ "loss": 3.1694,
16
+ "step": 100
17
+ },
18
+ {
19
+ "epoch": 0.03,
20
+ "eval_loss": 2.1809041500091553,
21
+ "eval_runtime": 688.5742,
22
+ "eval_samples_per_second": 49.254,
23
+ "eval_steps_per_second": 1.539,
24
+ "step": 100
25
+ },
26
+ {
27
+ "epoch": 0.06,
28
+ "grad_norm": 0.5750323534011841,
29
+ "learning_rate": 9.655172413793105e-05,
30
+ "loss": 2.0372,
31
+ "step": 200
32
+ },
33
+ {
34
+ "epoch": 0.06,
35
+ "eval_loss": 1.9693516492843628,
36
+ "eval_runtime": 688.4711,
37
+ "eval_samples_per_second": 49.261,
38
+ "eval_steps_per_second": 1.54,
39
+ "step": 200
40
+ },
41
+ {
42
+ "epoch": 0.09,
43
+ "grad_norm": 0.6069626808166504,
44
+ "learning_rate": 9.310344827586207e-05,
45
+ "loss": 1.9397,
46
+ "step": 300
47
+ },
48
+ {
49
+ "epoch": 0.09,
50
+ "eval_loss": 1.914998173713684,
51
+ "eval_runtime": 688.3078,
52
+ "eval_samples_per_second": 49.273,
53
+ "eval_steps_per_second": 1.54,
54
+ "step": 300
55
+ },
56
+ {
57
+ "epoch": 0.13,
58
+ "grad_norm": 0.6587632894515991,
59
+ "learning_rate": 8.96551724137931e-05,
60
+ "loss": 1.9029,
61
+ "step": 400
62
+ },
63
+ {
64
+ "epoch": 0.13,
65
+ "eval_loss": 1.887677550315857,
66
+ "eval_runtime": 688.3053,
67
+ "eval_samples_per_second": 49.273,
68
+ "eval_steps_per_second": 1.54,
69
+ "step": 400
70
+ },
71
+ {
72
+ "epoch": 0.16,
73
+ "grad_norm": 0.6251624226570129,
74
+ "learning_rate": 8.620689655172413e-05,
75
+ "loss": 1.8749,
76
+ "step": 500
77
+ },
78
+ {
79
+ "epoch": 0.16,
80
+ "eval_loss": 1.8642584085464478,
81
+ "eval_runtime": 688.2945,
82
+ "eval_samples_per_second": 49.274,
83
+ "eval_steps_per_second": 1.54,
84
+ "step": 500
85
+ },
86
+ {
87
+ "epoch": 0.19,
88
+ "grad_norm": 0.6488652229309082,
89
+ "learning_rate": 8.275862068965517e-05,
90
+ "loss": 1.8444,
91
+ "step": 600
92
+ },
93
+ {
94
+ "epoch": 0.19,
95
+ "eval_loss": 1.8471214771270752,
96
+ "eval_runtime": 688.3193,
97
+ "eval_samples_per_second": 49.272,
98
+ "eval_steps_per_second": 1.54,
99
+ "step": 600
100
+ },
101
+ {
102
+ "epoch": 0.22,
103
+ "grad_norm": 0.5931334495544434,
104
+ "learning_rate": 7.931034482758621e-05,
105
+ "loss": 1.8316,
106
+ "step": 700
107
+ },
108
+ {
109
+ "epoch": 0.22,
110
+ "eval_loss": 1.8358324766159058,
111
+ "eval_runtime": 688.2994,
112
+ "eval_samples_per_second": 49.274,
113
+ "eval_steps_per_second": 1.54,
114
+ "step": 700
115
+ },
116
+ {
117
+ "epoch": 0.25,
118
+ "grad_norm": 0.5620170831680298,
119
+ "learning_rate": 7.586206896551724e-05,
120
+ "loss": 1.8312,
121
+ "step": 800
122
+ },
123
+ {
124
+ "epoch": 0.25,
125
+ "eval_loss": 1.824582815170288,
126
+ "eval_runtime": 688.296,
127
+ "eval_samples_per_second": 49.274,
128
+ "eval_steps_per_second": 1.54,
129
+ "step": 800
130
+ },
131
+ {
132
+ "epoch": 0.28,
133
+ "grad_norm": 0.5843664407730103,
134
+ "learning_rate": 7.241379310344828e-05,
135
+ "loss": 1.8203,
136
+ "step": 900
137
+ },
138
+ {
139
+ "epoch": 0.28,
140
+ "eval_loss": 1.8139162063598633,
141
+ "eval_runtime": 688.4311,
142
+ "eval_samples_per_second": 49.264,
143
+ "eval_steps_per_second": 1.54,
144
+ "step": 900
145
+ },
146
+ {
147
+ "epoch": 0.31,
148
+ "grad_norm": 0.6241691708564758,
149
+ "learning_rate": 6.896551724137931e-05,
150
+ "loss": 1.8057,
151
+ "step": 1000
152
+ },
153
+ {
154
+ "epoch": 0.31,
155
+ "eval_loss": 1.8063077926635742,
156
+ "eval_runtime": 688.4241,
157
+ "eval_samples_per_second": 49.265,
158
+ "eval_steps_per_second": 1.54,
159
+ "step": 1000
160
+ },
161
+ {
162
+ "epoch": 0.35,
163
+ "grad_norm": 0.639207661151886,
164
+ "learning_rate": 6.551724137931034e-05,
165
+ "loss": 1.7986,
166
+ "step": 1100
167
+ },
168
+ {
169
+ "epoch": 0.35,
170
+ "eval_loss": 1.7982680797576904,
171
+ "eval_runtime": 688.2656,
172
+ "eval_samples_per_second": 49.276,
173
+ "eval_steps_per_second": 1.54,
174
+ "step": 1100
175
+ },
176
+ {
177
+ "epoch": 0.38,
178
+ "grad_norm": 0.6417416930198669,
179
+ "learning_rate": 6.206896551724138e-05,
180
+ "loss": 1.7969,
181
+ "step": 1200
182
+ },
183
+ {
184
+ "epoch": 0.38,
185
+ "eval_loss": 1.7924365997314453,
186
+ "eval_runtime": 688.2797,
187
+ "eval_samples_per_second": 49.275,
188
+ "eval_steps_per_second": 1.54,
189
+ "step": 1200
190
+ },
191
+ {
192
+ "epoch": 0.41,
193
+ "grad_norm": 0.6295751333236694,
194
+ "learning_rate": 5.862068965517241e-05,
195
+ "loss": 1.779,
196
+ "step": 1300
197
+ },
198
+ {
199
+ "epoch": 0.41,
200
+ "eval_loss": 1.785871148109436,
201
+ "eval_runtime": 688.4975,
202
+ "eval_samples_per_second": 49.259,
203
+ "eval_steps_per_second": 1.54,
204
+ "step": 1300
205
+ },
206
+ {
207
+ "epoch": 0.44,
208
+ "grad_norm": 0.6242513656616211,
209
+ "learning_rate": 5.517241379310345e-05,
210
+ "loss": 1.7743,
211
+ "step": 1400
212
+ },
213
+ {
214
+ "epoch": 0.44,
215
+ "eval_loss": 1.780082106590271,
216
+ "eval_runtime": 688.2673,
217
+ "eval_samples_per_second": 49.276,
218
+ "eval_steps_per_second": 1.54,
219
+ "step": 1400
220
+ },
221
+ {
222
+ "epoch": 0.47,
223
+ "grad_norm": 0.6389493942260742,
224
+ "learning_rate": 5.172413793103449e-05,
225
+ "loss": 1.769,
226
+ "step": 1500
227
+ },
228
+ {
229
+ "epoch": 0.47,
230
+ "eval_loss": 1.7744983434677124,
231
+ "eval_runtime": 687.8653,
232
+ "eval_samples_per_second": 49.305,
233
+ "eval_steps_per_second": 1.541,
234
+ "step": 1500
235
+ },
236
+ {
237
+ "epoch": 0.5,
238
+ "grad_norm": 0.669941246509552,
239
+ "learning_rate": 4.827586206896552e-05,
240
+ "loss": 1.7734,
241
+ "step": 1600
242
+ },
243
+ {
244
+ "epoch": 0.5,
245
+ "eval_loss": 1.7702207565307617,
246
+ "eval_runtime": 688.2155,
247
+ "eval_samples_per_second": 49.28,
248
+ "eval_steps_per_second": 1.54,
249
+ "step": 1600
250
+ },
251
+ {
252
+ "epoch": 0.53,
253
+ "grad_norm": 0.6194856762886047,
254
+ "learning_rate": 4.482758620689655e-05,
255
+ "loss": 1.7666,
256
+ "step": 1700
257
+ },
258
+ {
259
+ "epoch": 0.53,
260
+ "eval_loss": 1.7659046649932861,
261
+ "eval_runtime": 688.2457,
262
+ "eval_samples_per_second": 49.277,
263
+ "eval_steps_per_second": 1.54,
264
+ "step": 1700
265
+ },
266
+ {
267
+ "epoch": 0.57,
268
+ "grad_norm": 0.6265833377838135,
269
+ "learning_rate": 4.1379310344827587e-05,
270
+ "loss": 1.7578,
271
+ "step": 1800
272
+ },
273
+ {
274
+ "epoch": 0.57,
275
+ "eval_loss": 1.7620124816894531,
276
+ "eval_runtime": 688.4272,
277
+ "eval_samples_per_second": 49.264,
278
+ "eval_steps_per_second": 1.54,
279
+ "step": 1800
280
+ },
281
+ {
282
+ "epoch": 0.6,
283
+ "grad_norm": 0.6443737745285034,
284
+ "learning_rate": 3.793103448275862e-05,
285
+ "loss": 1.7321,
286
+ "step": 1900
287
+ },
288
+ {
289
+ "epoch": 0.6,
290
+ "eval_loss": 1.7327184677124023,
291
+ "eval_runtime": 679.9956,
292
+ "eval_samples_per_second": 49.875,
293
+ "eval_steps_per_second": 1.559,
294
+ "step": 1900
295
+ },
296
+ {
297
+ "epoch": 0.63,
298
+ "grad_norm": 0.6571601033210754,
299
+ "learning_rate": 3.4482758620689657e-05,
300
+ "loss": 1.7336,
301
+ "step": 2000
302
+ },
303
+ {
304
+ "epoch": 0.63,
305
+ "eval_loss": 1.730404019355774,
306
+ "eval_runtime": 679.76,
307
+ "eval_samples_per_second": 49.893,
308
+ "eval_steps_per_second": 1.559,
309
+ "step": 2000
310
+ },
311
+ {
312
+ "epoch": 0.66,
313
+ "grad_norm": 0.651569128036499,
314
+ "learning_rate": 3.103448275862069e-05,
315
+ "loss": 1.7216,
316
+ "step": 2100
317
+ },
318
+ {
319
+ "epoch": 0.66,
320
+ "eval_loss": 1.7281814813613892,
321
+ "eval_runtime": 679.7835,
322
+ "eval_samples_per_second": 49.891,
323
+ "eval_steps_per_second": 1.559,
324
+ "step": 2100
325
+ },
326
+ {
327
+ "epoch": 0.69,
328
+ "grad_norm": 0.6475515365600586,
329
+ "learning_rate": 2.7586206896551727e-05,
330
+ "loss": 1.7263,
331
+ "step": 2200
332
+ },
333
+ {
334
+ "epoch": 0.69,
335
+ "eval_loss": 1.726309061050415,
336
+ "eval_runtime": 679.7496,
337
+ "eval_samples_per_second": 49.893,
338
+ "eval_steps_per_second": 1.559,
339
+ "step": 2200
340
+ },
341
+ {
342
+ "epoch": 0.72,
343
+ "grad_norm": 0.6775307059288025,
344
+ "learning_rate": 2.413793103448276e-05,
345
+ "loss": 1.728,
346
+ "step": 2300
347
+ },
348
+ {
349
+ "epoch": 0.72,
350
+ "eval_loss": 1.7238056659698486,
351
+ "eval_runtime": 679.9872,
352
+ "eval_samples_per_second": 49.876,
353
+ "eval_steps_per_second": 1.559,
354
+ "step": 2300
355
+ },
356
+ {
357
+ "epoch": 0.75,
358
+ "grad_norm": 0.7065313458442688,
359
+ "learning_rate": 2.0689655172413793e-05,
360
+ "loss": 1.7222,
361
+ "step": 2400
362
+ },
363
+ {
364
+ "epoch": 0.75,
365
+ "eval_loss": 1.7217180728912354,
366
+ "eval_runtime": 679.9742,
367
+ "eval_samples_per_second": 49.877,
368
+ "eval_steps_per_second": 1.559,
369
+ "step": 2400
370
+ },
371
+ {
372
+ "epoch": 0.79,
373
+ "grad_norm": 0.6938297748565674,
374
+ "learning_rate": 1.7241379310344828e-05,
375
+ "loss": 1.7249,
376
+ "step": 2500
377
+ },
378
+ {
379
+ "epoch": 0.79,
380
+ "eval_loss": 1.719938039779663,
381
+ "eval_runtime": 679.7345,
382
+ "eval_samples_per_second": 49.894,
383
+ "eval_steps_per_second": 1.559,
384
+ "step": 2500
385
+ },
386
+ {
387
+ "epoch": 0.82,
388
+ "grad_norm": 0.6739135980606079,
389
+ "learning_rate": 1.3793103448275863e-05,
390
+ "loss": 1.7116,
391
+ "step": 2600
392
+ },
393
+ {
394
+ "epoch": 0.82,
395
+ "eval_loss": 1.7181174755096436,
396
+ "eval_runtime": 679.9623,
397
+ "eval_samples_per_second": 49.878,
398
+ "eval_steps_per_second": 1.559,
399
+ "step": 2600
400
+ },
401
+ {
402
+ "epoch": 0.85,
403
+ "grad_norm": 0.6775588989257812,
404
+ "learning_rate": 1.0344827586206897e-05,
405
+ "loss": 1.7146,
406
+ "step": 2700
407
+ },
408
+ {
409
+ "epoch": 0.85,
410
+ "eval_loss": 1.7168805599212646,
411
+ "eval_runtime": 679.7273,
412
+ "eval_samples_per_second": 49.895,
413
+ "eval_steps_per_second": 1.559,
414
+ "step": 2700
415
+ },
416
+ {
417
+ "epoch": 0.88,
418
+ "grad_norm": 0.6750255823135376,
419
+ "learning_rate": 6.896551724137932e-06,
420
+ "loss": 1.712,
421
+ "step": 2800
422
+ },
423
+ {
424
+ "epoch": 0.88,
425
+ "eval_loss": 1.715585708618164,
426
+ "eval_runtime": 679.7333,
427
+ "eval_samples_per_second": 49.895,
428
+ "eval_steps_per_second": 1.559,
429
+ "step": 2800
430
+ },
431
+ {
432
+ "epoch": 0.91,
433
+ "grad_norm": 0.68208247423172,
434
+ "learning_rate": 3.448275862068966e-06,
435
+ "loss": 1.7184,
436
+ "step": 2900
437
+ },
438
+ {
439
+ "epoch": 0.91,
440
+ "eval_loss": 1.7148162126541138,
441
+ "eval_runtime": 679.6399,
442
+ "eval_samples_per_second": 49.901,
443
+ "eval_steps_per_second": 1.56,
444
+ "step": 2900
445
+ },
446
+ {
447
+ "epoch": 0.94,
448
+ "grad_norm": 0.6982720494270325,
449
+ "learning_rate": 0.0,
450
+ "loss": 1.7137,
451
+ "step": 3000
452
+ },
453
+ {
454
+ "epoch": 0.94,
455
+ "eval_loss": 1.7144192457199097,
456
+ "eval_runtime": 679.8535,
457
+ "eval_samples_per_second": 49.886,
458
+ "eval_steps_per_second": 1.559,
459
+ "step": 3000
460
+ },
461
+ {
462
+ "epoch": 0.97,
463
+ "grad_norm": 0.7738541960716248,
464
+ "learning_rate": 3.8775510204081634e-05,
465
+ "loss": 1.7029,
466
+ "step": 3100
467
+ },
468
+ {
469
+ "epoch": 0.97,
470
+ "eval_loss": 1.7050038576126099,
471
+ "eval_runtime": 687.1983,
472
+ "eval_samples_per_second": 49.353,
473
+ "eval_steps_per_second": 1.542,
474
+ "step": 3100
475
+ },
476
+ {
477
+ "epoch": 1.01,
478
+ "grad_norm": 0.6895627379417419,
479
+ "learning_rate": 3.673469387755102e-05,
480
+ "loss": 1.7094,
481
+ "step": 3200
482
+ },
483
+ {
484
+ "epoch": 1.01,
485
+ "eval_loss": 1.7042526006698608,
486
+ "eval_runtime": 687.1845,
487
+ "eval_samples_per_second": 49.354,
488
+ "eval_steps_per_second": 1.543,
489
+ "step": 3200
490
+ },
491
+ {
492
+ "epoch": 1.04,
493
+ "grad_norm": 0.8041057586669922,
494
+ "learning_rate": 3.469387755102041e-05,
495
+ "loss": 1.7049,
496
+ "step": 3300
497
+ },
498
+ {
499
+ "epoch": 1.04,
500
+ "eval_loss": 1.7035516500473022,
501
+ "eval_runtime": 687.4035,
502
+ "eval_samples_per_second": 49.338,
503
+ "eval_steps_per_second": 1.542,
504
+ "step": 3300
505
+ },
506
+ {
507
+ "epoch": 1.07,
508
+ "grad_norm": 0.7259939908981323,
509
+ "learning_rate": 3.265306122448979e-05,
510
+ "loss": 1.7098,
511
+ "step": 3400
512
+ },
513
+ {
514
+ "epoch": 1.07,
515
+ "eval_loss": 1.7024834156036377,
516
+ "eval_runtime": 687.1647,
517
+ "eval_samples_per_second": 49.355,
518
+ "eval_steps_per_second": 1.543,
519
+ "step": 3400
520
+ },
521
+ {
522
+ "epoch": 1.1,
523
+ "grad_norm": 0.7912746667861938,
524
+ "learning_rate": 3.061224489795919e-05,
525
+ "loss": 1.7015,
526
+ "step": 3500
527
+ },
528
+ {
529
+ "epoch": 1.1,
530
+ "eval_loss": 1.7005605697631836,
531
+ "eval_runtime": 687.1366,
532
+ "eval_samples_per_second": 49.357,
533
+ "eval_steps_per_second": 1.543,
534
+ "step": 3500
535
+ },
536
+ {
537
+ "epoch": 1.13,
538
+ "grad_norm": 0.8287527561187744,
539
+ "learning_rate": 2.857142857142857e-05,
540
+ "loss": 1.6876,
541
+ "step": 3600
542
+ },
543
+ {
544
+ "epoch": 1.13,
545
+ "eval_loss": 1.6933950185775757,
546
+ "eval_runtime": 683.5096,
547
+ "eval_samples_per_second": 49.619,
548
+ "eval_steps_per_second": 1.551,
549
+ "step": 3600
550
+ },
551
+ {
552
+ "epoch": 1.16,
553
+ "grad_norm": 0.736217737197876,
554
+ "learning_rate": 2.6530612244897963e-05,
555
+ "loss": 1.6958,
556
+ "step": 3700
557
+ },
558
+ {
559
+ "epoch": 1.16,
560
+ "eval_loss": 1.692893624305725,
561
+ "eval_runtime": 683.433,
562
+ "eval_samples_per_second": 49.624,
563
+ "eval_steps_per_second": 1.551,
564
+ "step": 3700
565
+ },
566
+ {
567
+ "epoch": 1.2,
568
+ "grad_norm": 0.7109358906745911,
569
+ "learning_rate": 2.448979591836735e-05,
570
+ "loss": 1.6885,
571
+ "step": 3800
572
+ },
573
+ {
574
+ "epoch": 1.2,
575
+ "eval_loss": 1.6916097402572632,
576
+ "eval_runtime": 683.3969,
577
+ "eval_samples_per_second": 49.627,
578
+ "eval_steps_per_second": 1.551,
579
+ "step": 3800
580
+ },
581
+ {
582
+ "epoch": 1.23,
583
+ "grad_norm": 0.7234348654747009,
584
+ "learning_rate": 2.2448979591836737e-05,
585
+ "loss": 1.6934,
586
+ "step": 3900
587
+ },
588
+ {
589
+ "epoch": 1.23,
590
+ "eval_loss": 1.6902754306793213,
591
+ "eval_runtime": 683.1628,
592
+ "eval_samples_per_second": 49.644,
593
+ "eval_steps_per_second": 1.552,
594
+ "step": 3900
595
+ },
596
+ {
597
+ "epoch": 1.26,
598
+ "grad_norm": 0.7684239149093628,
599
+ "learning_rate": 2.0408163265306123e-05,
600
+ "loss": 1.6909,
601
+ "step": 4000
602
+ },
603
+ {
604
+ "epoch": 1.26,
605
+ "eval_loss": 1.689305067062378,
606
+ "eval_runtime": 683.1661,
607
+ "eval_samples_per_second": 49.644,
608
+ "eval_steps_per_second": 1.552,
609
+ "step": 4000
610
+ },
611
+ {
612
+ "epoch": 1.29,
613
+ "grad_norm": 0.7669008374214172,
614
+ "learning_rate": 1.836734693877551e-05,
615
+ "loss": 1.6907,
616
+ "step": 4100
617
+ },
618
+ {
619
+ "epoch": 1.29,
620
+ "eval_loss": 1.688330888748169,
621
+ "eval_runtime": 683.1804,
622
+ "eval_samples_per_second": 49.643,
623
+ "eval_steps_per_second": 1.552,
624
+ "step": 4100
625
+ },
626
+ {
627
+ "epoch": 1.32,
628
+ "grad_norm": 0.7422395348548889,
629
+ "learning_rate": 1.6326530612244897e-05,
630
+ "loss": 1.6912,
631
+ "step": 4200
632
+ },
633
+ {
634
+ "epoch": 1.32,
635
+ "eval_loss": 1.687252163887024,
636
+ "eval_runtime": 683.2129,
637
+ "eval_samples_per_second": 49.64,
638
+ "eval_steps_per_second": 1.551,
639
+ "step": 4200
640
+ },
641
+ {
642
+ "epoch": 1.35,
643
+ "grad_norm": 0.7352548837661743,
644
+ "learning_rate": 1.4285714285714285e-05,
645
+ "loss": 1.6873,
646
+ "step": 4300
647
+ },
648
+ {
649
+ "epoch": 1.35,
650
+ "eval_loss": 1.6862083673477173,
651
+ "eval_runtime": 683.1788,
652
+ "eval_samples_per_second": 49.643,
653
+ "eval_steps_per_second": 1.552,
654
+ "step": 4300
655
+ },
656
+ {
657
+ "epoch": 1.38,
658
+ "grad_norm": 0.7130007147789001,
659
+ "learning_rate": 1.2244897959183674e-05,
660
+ "loss": 1.6858,
661
+ "step": 4400
662
+ },
663
+ {
664
+ "epoch": 1.38,
665
+ "eval_loss": 1.6853961944580078,
666
+ "eval_runtime": 683.1786,
667
+ "eval_samples_per_second": 49.643,
668
+ "eval_steps_per_second": 1.552,
669
+ "step": 4400
670
+ },
671
+ {
672
+ "epoch": 1.42,
673
+ "grad_norm": 0.7947734594345093,
674
+ "learning_rate": 1.0204081632653061e-05,
675
+ "loss": 1.6813,
676
+ "step": 4500
677
+ },
678
+ {
679
+ "epoch": 1.42,
680
+ "eval_loss": 1.6845451593399048,
681
+ "eval_runtime": 683.4171,
682
+ "eval_samples_per_second": 49.626,
683
+ "eval_steps_per_second": 1.551,
684
+ "step": 4500
685
+ },
686
+ {
687
+ "epoch": 1.45,
688
+ "grad_norm": 0.7227717041969299,
689
+ "learning_rate": 8.163265306122448e-06,
690
+ "loss": 1.6867,
691
+ "step": 4600
692
+ },
693
+ {
694
+ "epoch": 1.45,
695
+ "eval_loss": 1.6836014986038208,
696
+ "eval_runtime": 683.3718,
697
+ "eval_samples_per_second": 49.629,
698
+ "eval_steps_per_second": 1.551,
699
+ "step": 4600
700
+ },
701
+ {
702
+ "epoch": 1.48,
703
+ "grad_norm": 0.746582567691803,
704
+ "learning_rate": 6.122448979591837e-06,
705
+ "loss": 1.6882,
706
+ "step": 4700
707
+ },
708
+ {
709
+ "epoch": 1.48,
710
+ "eval_loss": 1.682924509048462,
711
+ "eval_runtime": 683.3662,
712
+ "eval_samples_per_second": 49.629,
713
+ "eval_steps_per_second": 1.551,
714
+ "step": 4700
715
+ },
716
+ {
717
+ "epoch": 1.51,
718
+ "grad_norm": 0.7279271483421326,
719
+ "learning_rate": 4.081632653061224e-06,
720
+ "loss": 1.6872,
721
+ "step": 4800
722
+ },
723
+ {
724
+ "epoch": 1.51,
725
+ "eval_loss": 1.682388186454773,
726
+ "eval_runtime": 683.1514,
727
+ "eval_samples_per_second": 49.645,
728
+ "eval_steps_per_second": 1.552,
729
+ "step": 4800
730
+ },
731
+ {
732
+ "epoch": 1.54,
733
+ "grad_norm": 0.7303986549377441,
734
+ "learning_rate": 2.040816326530612e-06,
735
+ "loss": 1.6898,
736
+ "step": 4900
737
+ },
738
+ {
739
+ "epoch": 1.54,
740
+ "eval_loss": 1.682073950767517,
741
+ "eval_runtime": 683.3608,
742
+ "eval_samples_per_second": 49.63,
743
+ "eval_steps_per_second": 1.551,
744
+ "step": 4900
745
+ },
746
+ {
747
+ "epoch": 1.57,
748
+ "grad_norm": 0.763130784034729,
749
+ "learning_rate": 0.0,
750
+ "loss": 1.6845,
751
+ "step": 5000
752
+ },
753
+ {
754
+ "epoch": 1.57,
755
+ "eval_loss": 1.6819010972976685,
756
+ "eval_runtime": 683.1778,
757
+ "eval_samples_per_second": 49.643,
758
+ "eval_steps_per_second": 1.552,
759
+ "step": 5000
760
+ }
761
+ ],
762
+ "logging_steps": 100,
763
+ "max_steps": 5000,
764
+ "num_input_tokens_seen": 0,
765
+ "num_train_epochs": 2,
766
+ "save_steps": 50,
767
+ "total_flos": 2.03873794720034e+18,
768
+ "train_batch_size": 32,
769
+ "trial_name": null,
770
+ "trial_params": null
771
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc19869896809aeeb998276dffc5c796ca8ce160e5c5b0e576340e801ae8fa90
3
+ size 4856