#include "cpy.hpp" #include #include "dequantize.hpp" static __dpct_inline__ int best_index_int8(int n, const int8_t * val, float x) { if (x <= val[0]) { return 0; } if (x >= val[n - 1]) { return n - 1; } int ml = 0, mu = n - 1; while (mu - ml > 1) { int mav = (ml + mu) / 2; if (x < val[mav]) { mu = mav; } else { ml = mav; } } return x - val[mu - 1] < val[mu] - x ? mu - 1 : mu; } static void cpy_1_f32_f32(const char * cxi, char * cdsti) { const float * xi = (const float *) cxi; float * dsti = (float *) cdsti; *dsti = *xi; } static void cpy_1_f32_f16(const char * cxi, char * cdsti) { const float * xi = (const float *) cxi; sycl::half * dsti = (sycl::half *) cdsti; *dsti = sycl::vec(*xi).convert()[0]; } static void cpy_1_f16_f16(const char * cxi, char * cdsti) { const sycl::half * xi = (const sycl::half *) cxi; sycl::half * dsti = (sycl::half *) cdsti; *dsti = *xi; } static void cpy_1_f16_f32(const char * cxi, char * cdsti) { const sycl::half * xi = (const sycl::half *) cxi; float * dsti = (float *) cdsti; *dsti = *xi; } static void cpy_1_i16_i16(const char * cxi, char * cdsti) { const int16_t * xi = (const int16_t *) cxi; int16_t * dsti = (int16_t *) cdsti; *dsti = *xi; } static void cpy_1_i32_i32(const char * cxi, char * cdsti) { const int32_t * xi = (const int32_t *) cxi; int32_t * dsti = (int32_t *) cdsti; *dsti = *xi; } template static void cpy_f32_f16(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, const sycl::nd_item<3> & item_ct1) { const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2); if (i >= ne) { return; } // determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor // then combine those indices with the corresponding byte offsets to get the total offsets const int i03 = i / (ne00 * ne01 * ne02); const int i02 = (i - i03 * ne00 * ne01 * ne02) / (ne00 * ne01); const int i01 = (i - i03 * ne00 * ne01 * ne02 - i02 * ne01 * ne00) / ne00; const int i00 = i - i03 * ne00 * ne01 * ne02 - i02 * ne01 * ne00 - i01 * ne00; const int x_offset = i00 * nb00 + i01 * nb01 + i02 * nb02 + i03 * nb03; const int i13 = i / (ne10 * ne11 * ne12); const int i12 = (i - i13 * ne10 * ne11 * ne12) / (ne10 * ne11); const int i11 = (i - i13 * ne10 * ne11 * ne12 - i12 * ne10 * ne11) / ne10; const int i10 = i - i13 * ne10 * ne11 * ne12 - i12 * ne10 * ne11 - i11 * ne10; const int dst_offset = i10 * nb10 + i11 * nb11 + i12 * nb12 + i13 * nb13; cpy_1(cx + x_offset, cdst + dst_offset); } static void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) { const float * xi = (const float *) cxi; block_q8_0 * dsti = (block_q8_0 *) cdsti; float amax = 0.0f; // absolute max for (int j = 0; j < QK8_0; j++) { const float v = xi[j]; amax = sycl::fmax(amax, sycl::fabs((float) v)); } const float d = amax / ((1 << 7) - 1); const float id = d ? 1.0f / d : 0.0f; dsti->d = d; for (int j = 0; j < QK8_0; ++j) { const float x0 = xi[j] * id; dsti->qs[j] = sycl::round((float) x0); } } static void cpy_blck_q8_0_f32(const char * cxi, char * cdsti) { float * cdstf = (float *) (cdsti); for (int j = 0; j < QK8_0; j += 2) { dfloat2 dq; dequantize_q8_0(cxi, 0, j, dq); *(cdstf + j) = dq.x(); *(cdstf + j + 1) = dq.y(); } } static void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) { const float * xi = (const float *) cxi; block_q4_0 * dsti = (block_q4_0 *) cdsti; float amax = 0.0f; float vmax = 0.0f; for (int j = 0; j < QK4_0; ++j) { const float v = xi[j]; if (amax < sycl::fabs((float) v)) { amax = sycl::fabs((float) v); vmax = v; } } const float d = vmax / -8; const float id = d ? 1.0f / d : 0.0f; dsti->d = d; for (int j = 0; j < QK4_0 / 2; ++j) { const float x0 = xi[0 + j] * id; const float x1 = xi[QK4_0 / 2 + j] * id; const uint8_t xi0 = dpct::min(15, (int8_t) (x0 + 8.5f)); const uint8_t xi1 = dpct::min(15, (int8_t) (x1 + 8.5f)); dsti->qs[j] = xi0; dsti->qs[j] |= xi1 << 4; } } static void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) { const float * xi = (const float *) cxi; block_q4_1 * dsti = (block_q4_1 *) cdsti; float vmin = FLT_MAX; float vmax = -FLT_MAX; for (int j = 0; j < QK4_1; ++j) { const float v = xi[j]; if (v < vmin) { vmin = v; } if (v > vmax) { vmax = v; } } const float d = (vmax - vmin) / ((1 << 4) - 1); const float id = d ? 1.0f / d : 0.0f; dsti->dm.x() = d; dsti->dm.y() = vmin; for (int j = 0; j < QK4_1 / 2; ++j) { const float x0 = (xi[0 + j] - vmin) * id; const float x1 = (xi[QK4_1 / 2 + j] - vmin) * id; const uint8_t xi0 = dpct::min(15, (int8_t) (x0 + 0.5f)); const uint8_t xi1 = dpct::min(15, (int8_t) (x1 + 0.5f)); dsti->qs[j] = xi0; dsti->qs[j] |= xi1 << 4; } } static void cpy_blck_f32_q5_0(const char * cxi, char * cdsti) { const float * xi = (const float *) cxi; block_q5_0 * dsti = (block_q5_0 *) cdsti; float amax = 0.0f; float vmax = 0.0f; for (int j = 0; j < QK5_0; ++j) { const float v = xi[j]; if (amax < sycl::fabs((float) v)) { amax = sycl::fabs((float) v); vmax = v; } } const float d = vmax / -16; const float id = d ? 1.0f / d : 0.0f; dsti->d = d; uint32_t qh = 0; for (int j = 0; j < QK5_0 / 2; ++j) { const float x0 = xi[0 + j] * id; const float x1 = xi[QK5_0 / 2 + j] * id; const uint8_t xi0 = dpct::min(31, (int8_t) (x0 + 16.5f)); const uint8_t xi1 = dpct::min(31, (int8_t) (x1 + 16.5f)); dsti->qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4); qh |= ((xi0 & 0x10u) >> 4) << (j + 0); qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0 / 2); } memcpy(dsti->qh, &qh, sizeof(qh)); } static void cpy_blck_f32_q5_1(const char * cxi, char * cdsti) { const float * xi = (const float *) cxi; block_q5_1 * dsti = (block_q5_1 *) cdsti; float min = xi[0]; float max = xi[0]; for (int j = 1; j < QK5_1; ++j) { const float v = xi[j]; min = v < min ? v : min; max = v > max ? v : max; } const float d = (max - min) / 31; const float id = d ? 1.0f / d : 0.0f; dsti->dm.x() = d; dsti->dm.y() = min; uint32_t qh = 0; for (int j = 0; j < QK5_1 / 2; ++j) { const float x0 = (xi[0 + j] - min) * id; const float x1 = (xi[QK5_1 / 2 + j] - min) * id; const uint8_t xi0 = (uint8_t) (x0 + 0.5f); const uint8_t xi1 = (uint8_t) (x1 + 0.5f); dsti->qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4); qh |= ((xi0 & 0x10u) >> 4) << (j + 0); qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_1 / 2); } memcpy(dsti->qh, &qh, sizeof(qh)); } static void cpy_blck_f32_iq4_nl(const char * cxi, char * cdsti) { const float * xi = (const float *) cxi; block_iq4_nl * dsti = (block_iq4_nl *) cdsti; float amax = 0.0f; float vmax = 0.0f; for (int j = 0; j < QK4_NL; ++j) { const float v = xi[j]; if (amax < sycl::fabs((float) v)) { amax = sycl::fabs((float) v); vmax = v; } } float d = vmax / kvalues_iq4nl[0]; const float id = d ? 1.0f / d : 0.0f; float sumqx = 0, sumq2 = 0; for (int j = 0; j < QK4_NL / 2; ++j) { const float x0 = xi[0 + j] * id; const float x1 = xi[QK4_NL / 2 + j] * id; const uint8_t xi0 = best_index_int8(16, kvalues_iq4nl, x0); const uint8_t xi1 = best_index_int8(16, kvalues_iq4nl, x1); dsti->qs[j] = xi0 | (xi1 << 4); const float v0 = kvalues_iq4nl[xi0]; const float v1 = kvalues_iq4nl[xi1]; const float w0 = xi[0 + j] * xi[0 + j]; const float w1 = xi[QK4_NL / 2 + j] * xi[QK4_NL / 2 + j]; sumqx += w0 * v0 * xi[j] + w1 * v1 * xi[QK4_NL / 2 + j]; sumq2 += w0 * v0 * v0 + w1 * v1 * v1; } dsti->d = sumq2 > 0 ? sumqx / sumq2 : d; } template static void cpy_blck_q_f32(const char * cxi, char * cdsti) { float * cdstf = (float *) (cdsti); for (int j = 0; j < qk / 2; j++) { dfloat2 dq; dequant(cxi, 0, j, dq); *(cdstf + j) = dq.x(); *(cdstf + j + qk / 2) = dq.y(); } } template static void cpy_f32_q(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, const sycl::nd_item<3> & item_ct1) { const int i = (item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2)) * qk; if (i >= ne) { return; } const int i03 = i / (ne00 * ne01 * ne02); const int i02 = (i - i03 * ne00 * ne01 * ne02) / (ne00 * ne01); const int i01 = (i - i03 * ne00 * ne01 * ne02 - i02 * ne01 * ne00) / ne00; const int i00 = i - i03 * ne00 * ne01 * ne02 - i02 * ne01 * ne00 - i01 * ne00; const int x_offset = i00 * nb00 + i01 * nb01 + i02 * nb02 + i03 * nb03; const int i13 = i / (ne10 * ne11 * ne12); const int i12 = (i - i13 * ne10 * ne11 * ne12) / (ne10 * ne11); const int i11 = (i - i13 * ne10 * ne11 * ne12 - i12 * ne10 * ne11) / ne10; const int i10 = i - i13 * ne10 * ne11 * ne12 - i12 * ne10 * ne11 - i11 * ne10; const int dst_offset = (i10 / qk) * nb10 + i11 * nb11 + i12 * nb12 + i13 * nb13; cpy_blck(cx + x_offset, cdst + dst_offset); } template static void cpy_q_f32(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, const sycl::nd_item<3> & item_ct1) { const int i = (item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2)) * qk; if (i >= ne) { return; } const int i03 = i / (ne00 * ne01 * ne02); const int i02 = (i - i03 * ne00 * ne01 * ne02) / (ne00 * ne01); const int i01 = (i - i03 * ne00 * ne01 * ne02 - i02 * ne01 * ne00) / ne00; const int i00 = i - i03 * ne00 * ne01 * ne02 - i02 * ne01 * ne00 - i01 * ne00; const int x_offset = (i00 / qk) * nb00 + i01 * nb01 + i02 * nb02 + i03 * nb03; const int i13 = i / (ne10 * ne11 * ne12); const int i12 = (i - i13 * ne10 * ne11 * ne12) / (ne10 * ne11); const int i11 = (i - i13 * ne10 * ne11 * ne12 - i12 * ne10 * ne11) / ne10; const int i10 = i - i13 * ne10 * ne11 * ne12 - i12 * ne10 * ne11 - i11 * ne10; const int dst_offset = i10 * nb10 + i11 * nb11 + i12 * nb12 + i13 * nb13; cpy_blck(cx + x_offset, cdst + dst_offset); } static void ggml_cpy_f16_f32_sycl(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, queue_ptr stream) { const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE; { dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 }); stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { cpy_f32_f16(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1); }); } } static void ggml_cpy_f32_f32_sycl(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, queue_ptr stream) { const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE; { dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 }); stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { cpy_f32_f16(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1); }); } } static void ggml_cpy_f32_f16_sycl(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, queue_ptr stream) { const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE; { dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 }); stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { cpy_f32_f16(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1); }); } } static void ggml_cpy_f32_q8_0_sycl(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, queue_ptr stream) { GGML_ASSERT(ne % QK8_0 == 0); const int num_blocks = ne / QK8_0; stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks), sycl::range<3>(1, 1, 1)), [=](sycl::nd_item<3> item_ct1) { cpy_f32_q(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1); }); } static void ggml_cpy_q8_0_f32_sycl(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, queue_ptr stream) { const int num_blocks = ne; stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks), sycl::range<3>(1, 1, 1)), [=](sycl::nd_item<3> item_ct1) { cpy_q_f32(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1); }); } static void ggml_cpy_f32_q4_0_sycl(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, queue_ptr stream) { GGML_ASSERT(ne % QK4_0 == 0); const int num_blocks = ne / QK4_0; stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks), sycl::range<3>(1, 1, 1)), [=](sycl::nd_item<3> item_ct1) { cpy_f32_q(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1); }); } static void ggml_cpy_q4_0_f32_sycl(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, queue_ptr stream) { const int num_blocks = ne; stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks), sycl::range<3>(1, 1, 1)), [=](sycl::nd_item<3> item_ct1) { cpy_q_f32, QK4_0>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1); }); } static void ggml_cpy_f32_q4_1_sycl(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, queue_ptr stream) { GGML_ASSERT(ne % QK4_1 == 0); const int num_blocks = ne / QK4_1; stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks), sycl::range<3>(1, 1, 1)), [=](sycl::nd_item<3> item_ct1) { cpy_f32_q(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1); }); } static void ggml_cpy_q4_1_f32_sycl(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, queue_ptr stream) { const int num_blocks = ne; stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks), sycl::range<3>(1, 1, 1)), [=](sycl::nd_item<3> item_ct1) { cpy_q_f32, QK4_1>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1); }); } static void ggml_cpy_f32_q5_0_sycl(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, queue_ptr stream) { GGML_ASSERT(ne % QK5_0 == 0); const int num_blocks = ne / QK5_0; stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks), sycl::range<3>(1, 1, 1)), [=](sycl::nd_item<3> item_ct1) { cpy_f32_q(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1); }); } static void ggml_cpy_q5_0_f32_sycl(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, queue_ptr stream) { const int num_blocks = ne; stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks), sycl::range<3>(1, 1, 1)), [=](sycl::nd_item<3> item_ct1) { cpy_q_f32, QK5_0>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1); }); } static void ggml_cpy_f32_q5_1_sycl(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, queue_ptr stream) { GGML_ASSERT(ne % QK5_1 == 0); const int num_blocks = ne / QK5_1; stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks), sycl::range<3>(1, 1, 1)), [=](sycl::nd_item<3> item_ct1) { cpy_f32_q(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1); }); } static void ggml_cpy_q5_1_f32_sycl(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, queue_ptr stream) { const int num_blocks = ne; stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks), sycl::range<3>(1, 1, 1)), [=](sycl::nd_item<3> item_ct1) { cpy_q_f32, QK5_1>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1); }); } static void ggml_cpy_f32_iq4_nl_sycl(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, queue_ptr stream) { GGML_ASSERT(ne % QK4_NL == 0); const int num_blocks = ne / QK4_NL; stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks), sycl::range<3>(1, 1, 1)), [=](sycl::nd_item<3> item_ct1) { cpy_f32_q(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1); }); } static void ggml_cpy_f16_f16_sycl(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, queue_ptr stream) { const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE; { dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 }); stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { cpy_f32_f16(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1); }); } } static void ggml_cpy_i16_i16_sycl(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, queue_ptr stream) { const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE; { // dpct::has_capability_or_fail(stream->get_device(), // {sycl::aspect::fp16}); stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { cpy_f32_f16(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1); }); } } static void ggml_cpy_i32_i32_sycl(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, queue_ptr stream) { const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE; { // dpct::has_capability_or_fail(stream->get_device(), // {sycl::aspect::fp16}); stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { cpy_f32_f16(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1); }); } } void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1) try { const int64_t ne = ggml_nelements(src0); GGML_ASSERT(ne == ggml_nelements(src1)); GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX); GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX); GGML_TENSOR_BINARY_OP_LOCALS01; SYCL_CHECK(ggml_sycl_set_device(ctx.device)); queue_ptr main_stream = ctx.stream(); char * src0_ddc = (char *) src0->data; char * src1_ddc = (char *) src1->data; GGML_SYCL_DEBUG("[SYCL] %s: Tensor supplied: %s to %s\n", __func__, ggml_type_name(src0->type), ggml_type_name(src1->type)); if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) { ggml_cpy_f32_f32_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) { ggml_cpy_f32_f16_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) { ggml_cpy_f32_q8_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) { ggml_cpy_f32_q4_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) { ggml_cpy_f32_q4_1_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) { ggml_cpy_f16_f32_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) { ggml_cpy_f16_f16_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); } else if (src0->type == GGML_TYPE_I16 && src1->type == GGML_TYPE_I16) { ggml_cpy_i16_i16_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); } else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32) { ggml_cpy_i32_i32_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); } else if (src0->type == GGML_TYPE_Q4_0 && src1->type == GGML_TYPE_F32) { ggml_cpy_q4_0_f32_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); } else if (src0->type == GGML_TYPE_Q4_1 && src1->type == GGML_TYPE_F32) { ggml_cpy_q4_1_f32_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); } else if (src0->type == GGML_TYPE_Q8_0 && src1->type == GGML_TYPE_F32) { ggml_cpy_q8_0_f32_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_0) { ggml_cpy_f32_q5_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); } else if (src0->type == GGML_TYPE_Q5_0 && src1->type == GGML_TYPE_F32) { ggml_cpy_q5_0_f32_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_1) { ggml_cpy_f32_q5_1_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); } else if (src0->type == GGML_TYPE_Q5_1 && src1->type == GGML_TYPE_F32) { ggml_cpy_q5_1_f32_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_IQ4_NL) { ggml_cpy_f32_iq4_nl_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); } else { GGML_LOG_ERROR("%s: unsupported type combination (%s to %s)\n", __func__, ggml_type_name(src0->type), ggml_type_name(src1->type)); GGML_ABORT("fatal error"); } } catch (const sycl::exception & exc) { std::cerr << exc.what() << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl; std::exit(1); } void ggml_sycl_dup(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { // TODO: why do we pass dst as src1 here? GGML_SYCL_DEBUG("[SYCL] call %s\n", __func__); ggml_sycl_cpy(ctx, dst->src[0], dst); GGML_SYCL_DEBUG("[SYCL] call %s done\n", __func__); }