DashReza7 commited on
Commit
1e9d84a
1 Parent(s): 1d00fe0

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,540 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy
8
+ - cosine_accuracy_threshold
9
+ - cosine_f1
10
+ - cosine_f1_threshold
11
+ - cosine_precision
12
+ - cosine_recall
13
+ - cosine_ap
14
+ - dot_accuracy
15
+ - dot_accuracy_threshold
16
+ - dot_f1
17
+ - dot_f1_threshold
18
+ - dot_precision
19
+ - dot_recall
20
+ - dot_ap
21
+ - manhattan_accuracy
22
+ - manhattan_accuracy_threshold
23
+ - manhattan_f1
24
+ - manhattan_f1_threshold
25
+ - manhattan_precision
26
+ - manhattan_recall
27
+ - manhattan_ap
28
+ - euclidean_accuracy
29
+ - euclidean_accuracy_threshold
30
+ - euclidean_f1
31
+ - euclidean_f1_threshold
32
+ - euclidean_precision
33
+ - euclidean_recall
34
+ - euclidean_ap
35
+ - max_accuracy
36
+ - max_accuracy_threshold
37
+ - max_f1
38
+ - max_f1_threshold
39
+ - max_precision
40
+ - max_recall
41
+ - max_ap
42
+ pipeline_tag: sentence-similarity
43
+ tags:
44
+ - sentence-transformers
45
+ - sentence-similarity
46
+ - feature-extraction
47
+ - generated_from_trainer
48
+ - dataset_size:410745
49
+ - loss:ContrastiveLoss
50
+ widget:
51
+ - source_sentence: وینچ
52
+ sentences:
53
+ - ترقه شکلاتی ( هفت ترقه ) ناریه پارس درجه 1 بسته 15 عددی ترقه شکلاتی ( هفت ترقه
54
+ ) ناریه پارس درجه 1 بسته 15 عددی 10عدد ناریه ترقه شکلاتی هفت ترقه بار تازه بدون
55
+ رطوبت وخرابی مارک معتبر نورافشانی
56
+ - پارچه میکرو کجراه
57
+ - Car winch-1500LBS-KARA وینچ خودرو آفرود ۶۸۰ کیلوگرم کارا ۱۵۰۰lbs وینچ خودرویی
58
+ (جلو ماشینی) 1500LBS کارا (KARA)
59
+ - source_sentence: ' وسپا '
60
+ sentences:
61
+ - پولوشرت زرد وسپا
62
+ - دوچرخه بند سقفی لیفان X70 ایکس 70 آلومینیومی طرح منابو
63
+ - دوچرخه ویوا Oxygen سایز 26 دوچرخه 26 ويوا OXYGEN دوچرخه کوهستان ویوا مدل OXYGEN
64
+ سایز 26
65
+ - source_sentence: دوچرخه المپیا سایز 27 5
66
+ sentences:
67
+ - دوچرخه شهری المپیا کد 16220 سایز 16 دوچرخه شهری المپیا کد 16220 سایز 16 دوچرخه
68
+ المپیا کد 16220 سایز 16 - OLYMPIA
69
+ - لامپ اس ام دی خودرو مدل 8B بسته 2 عددی
70
+ - قیمت کمپرس سنج موتور
71
+ - source_sentence: دچرخه ی
72
+ sentences:
73
+ - هیدروفیشیال ۷ کاره نیوفیس پلاس متور سنگین ۲۰۲۲
74
+ - جامدادی کیوت
75
+ - جعبه ی کادو ی رنگی
76
+ - source_sentence: هایومکس
77
+ sentences:
78
+ - انگشتر حدید صینی کد2439
79
+ - ژل هایومکس ولومایزر 2 سی سی
80
+ - دزدگیر پاناتک مدل P-CA501 دزدگیر پاناتک P-CA501-2 دزدگیر پاناتک مدل P-CA501-2
81
+ model-index:
82
+ - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
83
+ results:
84
+ - task:
85
+ type: binary-classification
86
+ name: Binary Classification
87
+ dataset:
88
+ name: Unknown
89
+ type: unknown
90
+ metrics:
91
+ - type: cosine_accuracy
92
+ value: 0.8531738206358597
93
+ name: Cosine Accuracy
94
+ - type: cosine_accuracy_threshold
95
+ value: 0.763870358467102
96
+ name: Cosine Accuracy Threshold
97
+ - type: cosine_f1
98
+ value: 0.9032999224561303
99
+ name: Cosine F1
100
+ - type: cosine_f1_threshold
101
+ value: 0.7447167634963989
102
+ name: Cosine F1 Threshold
103
+ - type: cosine_precision
104
+ value: 0.8649689236015621
105
+ name: Cosine Precision
106
+ - type: cosine_recall
107
+ value: 0.9451857194374323
108
+ name: Cosine Recall
109
+ - type: cosine_ap
110
+ value: 0.9354580013152192
111
+ name: Cosine Ap
112
+ - type: dot_accuracy
113
+ value: 0.8179627073336401
114
+ name: Dot Accuracy
115
+ - type: dot_accuracy_threshold
116
+ value: 17.24372100830078
117
+ name: Dot Accuracy Threshold
118
+ - type: dot_f1
119
+ value: 0.8831898479427548
120
+ name: Dot F1
121
+ - type: dot_f1_threshold
122
+ value: 16.905807495117188
123
+ name: Dot F1 Threshold
124
+ - type: dot_precision
125
+ value: 0.8255042324171805
126
+ name: Dot Precision
127
+ - type: dot_recall
128
+ value: 0.9495432143286453
129
+ name: Dot Recall
130
+ - type: dot_ap
131
+ value: 0.9192801272426158
132
+ name: Dot Ap
133
+ - type: manhattan_accuracy
134
+ value: 0.8484629374000306
135
+ name: Manhattan Accuracy
136
+ - type: manhattan_accuracy_threshold
137
+ value: 56.168235778808594
138
+ name: Manhattan Accuracy Threshold
139
+ - type: manhattan_f1
140
+ value: 0.9006901291486498
141
+ name: Manhattan F1
142
+ - type: manhattan_f1_threshold
143
+ value: 57.448089599609375
144
+ name: Manhattan F1 Threshold
145
+ - type: manhattan_precision
146
+ value: 0.8601706503309084
147
+ name: Manhattan Precision
148
+ - type: manhattan_recall
149
+ value: 0.9452157711263373
150
+ name: Manhattan Recall
151
+ - type: manhattan_ap
152
+ value: 0.9331690796886208
153
+ name: Manhattan Ap
154
+ - type: euclidean_accuracy
155
+ value: 0.8485944039089375
156
+ name: Euclidean Accuracy
157
+ - type: euclidean_accuracy_threshold
158
+ value: 3.5569825172424316
159
+ name: Euclidean Accuracy Threshold
160
+ - type: euclidean_f1
161
+ value: 0.9009756516265629
162
+ name: Euclidean F1
163
+ - type: euclidean_f1_threshold
164
+ value: 3.694398880004883
165
+ name: Euclidean F1 Threshold
166
+ - type: euclidean_precision
167
+ value: 0.8597717468465025
168
+ name: Euclidean Precision
169
+ - type: euclidean_recall
170
+ value: 0.9463276836158192
171
+ name: Euclidean Recall
172
+ - type: euclidean_ap
173
+ value: 0.9332275611001725
174
+ name: Euclidean Ap
175
+ - type: max_accuracy
176
+ value: 0.8531738206358597
177
+ name: Max Accuracy
178
+ - type: max_accuracy_threshold
179
+ value: 56.168235778808594
180
+ name: Max Accuracy Threshold
181
+ - type: max_f1
182
+ value: 0.9032999224561303
183
+ name: Max F1
184
+ - type: max_f1_threshold
185
+ value: 57.448089599609375
186
+ name: Max F1 Threshold
187
+ - type: max_precision
188
+ value: 0.8649689236015621
189
+ name: Max Precision
190
+ - type: max_recall
191
+ value: 0.9495432143286453
192
+ name: Max Recall
193
+ - type: max_ap
194
+ value: 0.9354580013152192
195
+ name: Max Ap
196
+ ---
197
+
198
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
199
+
200
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
201
+
202
+ ## Model Details
203
+
204
+ ### Model Description
205
+ - **Model Type:** Sentence Transformer
206
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision bf3bf13ab40c3157080a7ab344c831b9ad18b5eb -->
207
+ - **Maximum Sequence Length:** 128 tokens
208
+ - **Output Dimensionality:** 384 tokens
209
+ - **Similarity Function:** Cosine Similarity
210
+ <!-- - **Training Dataset:** Unknown -->
211
+ <!-- - **Language:** Unknown -->
212
+ <!-- - **License:** Unknown -->
213
+
214
+ ### Model Sources
215
+
216
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
217
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
218
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
219
+
220
+ ### Full Model Architecture
221
+
222
+ ```
223
+ SentenceTransformer(
224
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
225
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
226
+ )
227
+ ```
228
+
229
+ ## Usage
230
+
231
+ ### Direct Usage (Sentence Transformers)
232
+
233
+ First install the Sentence Transformers library:
234
+
235
+ ```bash
236
+ pip install -U sentence-transformers
237
+ ```
238
+
239
+ Then you can load this model and run inference.
240
+ ```python
241
+ from sentence_transformers import SentenceTransformer
242
+
243
+ # Download from the 🤗 Hub
244
+ model = SentenceTransformer("DashReza7/sentence-transformers_paraphrase-multilingual-MiniLM-L12-v2_FINETUNED_on_torob_data_v5")
245
+ # Run inference
246
+ sentences = [
247
+ 'هایومکس',
248
+ 'ژل هایومکس ولومایزر 2 سی سی',
249
+ 'دزدگیر پاناتک مدل P-CA501 دزدگیر پاناتک P-CA501-2 دزدگیر پاناتک مدل P-CA501-2',
250
+ ]
251
+ embeddings = model.encode(sentences)
252
+ print(embeddings.shape)
253
+ # [3, 384]
254
+
255
+ # Get the similarity scores for the embeddings
256
+ similarities = model.similarity(embeddings, embeddings)
257
+ print(similarities.shape)
258
+ # [3, 3]
259
+ ```
260
+
261
+ <!--
262
+ ### Direct Usage (Transformers)
263
+
264
+ <details><summary>Click to see the direct usage in Transformers</summary>
265
+
266
+ </details>
267
+ -->
268
+
269
+ <!--
270
+ ### Downstream Usage (Sentence Transformers)
271
+
272
+ You can finetune this model on your own dataset.
273
+
274
+ <details><summary>Click to expand</summary>
275
+
276
+ </details>
277
+ -->
278
+
279
+ <!--
280
+ ### Out-of-Scope Use
281
+
282
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
283
+ -->
284
+
285
+ ## Evaluation
286
+
287
+ ### Metrics
288
+
289
+ #### Binary Classification
290
+
291
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
292
+
293
+ | Metric | Value |
294
+ |:-----------------------------|:-----------|
295
+ | cosine_accuracy | 0.8532 |
296
+ | cosine_accuracy_threshold | 0.7639 |
297
+ | cosine_f1 | 0.9033 |
298
+ | cosine_f1_threshold | 0.7447 |
299
+ | cosine_precision | 0.865 |
300
+ | cosine_recall | 0.9452 |
301
+ | cosine_ap | 0.9355 |
302
+ | dot_accuracy | 0.818 |
303
+ | dot_accuracy_threshold | 17.2437 |
304
+ | dot_f1 | 0.8832 |
305
+ | dot_f1_threshold | 16.9058 |
306
+ | dot_precision | 0.8255 |
307
+ | dot_recall | 0.9495 |
308
+ | dot_ap | 0.9193 |
309
+ | manhattan_accuracy | 0.8485 |
310
+ | manhattan_accuracy_threshold | 56.1682 |
311
+ | manhattan_f1 | 0.9007 |
312
+ | manhattan_f1_threshold | 57.4481 |
313
+ | manhattan_precision | 0.8602 |
314
+ | manhattan_recall | 0.9452 |
315
+ | manhattan_ap | 0.9332 |
316
+ | euclidean_accuracy | 0.8486 |
317
+ | euclidean_accuracy_threshold | 3.557 |
318
+ | euclidean_f1 | 0.901 |
319
+ | euclidean_f1_threshold | 3.6944 |
320
+ | euclidean_precision | 0.8598 |
321
+ | euclidean_recall | 0.9463 |
322
+ | euclidean_ap | 0.9332 |
323
+ | max_accuracy | 0.8532 |
324
+ | max_accuracy_threshold | 56.1682 |
325
+ | max_f1 | 0.9033 |
326
+ | max_f1_threshold | 57.4481 |
327
+ | max_precision | 0.865 |
328
+ | max_recall | 0.9495 |
329
+ | **max_ap** | **0.9355** |
330
+
331
+ <!--
332
+ ## Bias, Risks and Limitations
333
+
334
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
335
+ -->
336
+
337
+ <!--
338
+ ### Recommendations
339
+
340
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
341
+ -->
342
+
343
+ ## Training Details
344
+
345
+ ### Training Hyperparameters
346
+ #### Non-Default Hyperparameters
347
+
348
+ - `eval_strategy`: steps
349
+ - `per_device_train_batch_size`: 256
350
+ - `per_device_eval_batch_size`: 256
351
+ - `learning_rate`: 2e-05
352
+ - `num_train_epochs`: 2
353
+ - `warmup_ratio`: 0.1
354
+ - `fp16`: True
355
+
356
+ #### All Hyperparameters
357
+ <details><summary>Click to expand</summary>
358
+
359
+ - `overwrite_output_dir`: False
360
+ - `do_predict`: False
361
+ - `eval_strategy`: steps
362
+ - `prediction_loss_only`: True
363
+ - `per_device_train_batch_size`: 256
364
+ - `per_device_eval_batch_size`: 256
365
+ - `per_gpu_train_batch_size`: None
366
+ - `per_gpu_eval_batch_size`: None
367
+ - `gradient_accumulation_steps`: 1
368
+ - `eval_accumulation_steps`: None
369
+ - `learning_rate`: 2e-05
370
+ - `weight_decay`: 0.0
371
+ - `adam_beta1`: 0.9
372
+ - `adam_beta2`: 0.999
373
+ - `adam_epsilon`: 1e-08
374
+ - `max_grad_norm`: 1.0
375
+ - `num_train_epochs`: 2
376
+ - `max_steps`: -1
377
+ - `lr_scheduler_type`: linear
378
+ - `lr_scheduler_kwargs`: {}
379
+ - `warmup_ratio`: 0.1
380
+ - `warmup_steps`: 0
381
+ - `log_level`: passive
382
+ - `log_level_replica`: warning
383
+ - `log_on_each_node`: True
384
+ - `logging_nan_inf_filter`: True
385
+ - `save_safetensors`: True
386
+ - `save_on_each_node`: False
387
+ - `save_only_model`: False
388
+ - `restore_callback_states_from_checkpoint`: False
389
+ - `no_cuda`: False
390
+ - `use_cpu`: False
391
+ - `use_mps_device`: False
392
+ - `seed`: 42
393
+ - `data_seed`: None
394
+ - `jit_mode_eval`: False
395
+ - `use_ipex`: False
396
+ - `bf16`: False
397
+ - `fp16`: True
398
+ - `fp16_opt_level`: O1
399
+ - `half_precision_backend`: auto
400
+ - `bf16_full_eval`: False
401
+ - `fp16_full_eval`: False
402
+ - `tf32`: None
403
+ - `local_rank`: 0
404
+ - `ddp_backend`: None
405
+ - `tpu_num_cores`: None
406
+ - `tpu_metrics_debug`: False
407
+ - `debug`: []
408
+ - `dataloader_drop_last`: False
409
+ - `dataloader_num_workers`: 0
410
+ - `dataloader_prefetch_factor`: None
411
+ - `past_index`: -1
412
+ - `disable_tqdm`: False
413
+ - `remove_unused_columns`: True
414
+ - `label_names`: None
415
+ - `load_best_model_at_end`: False
416
+ - `ignore_data_skip`: False
417
+ - `fsdp`: []
418
+ - `fsdp_min_num_params`: 0
419
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
420
+ - `fsdp_transformer_layer_cls_to_wrap`: None
421
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
422
+ - `deepspeed`: None
423
+ - `label_smoothing_factor`: 0.0
424
+ - `optim`: adamw_torch
425
+ - `optim_args`: None
426
+ - `adafactor`: False
427
+ - `group_by_length`: False
428
+ - `length_column_name`: length
429
+ - `ddp_find_unused_parameters`: None
430
+ - `ddp_bucket_cap_mb`: None
431
+ - `ddp_broadcast_buffers`: False
432
+ - `dataloader_pin_memory`: True
433
+ - `dataloader_persistent_workers`: False
434
+ - `skip_memory_metrics`: True
435
+ - `use_legacy_prediction_loop`: False
436
+ - `push_to_hub`: False
437
+ - `resume_from_checkpoint`: None
438
+ - `hub_model_id`: None
439
+ - `hub_strategy`: every_save
440
+ - `hub_private_repo`: False
441
+ - `hub_always_push`: False
442
+ - `gradient_checkpointing`: False
443
+ - `gradient_checkpointing_kwargs`: None
444
+ - `include_inputs_for_metrics`: False
445
+ - `eval_do_concat_batches`: True
446
+ - `fp16_backend`: auto
447
+ - `push_to_hub_model_id`: None
448
+ - `push_to_hub_organization`: None
449
+ - `mp_parameters`:
450
+ - `auto_find_batch_size`: False
451
+ - `full_determinism`: False
452
+ - `torchdynamo`: None
453
+ - `ray_scope`: last
454
+ - `ddp_timeout`: 1800
455
+ - `torch_compile`: False
456
+ - `torch_compile_backend`: None
457
+ - `torch_compile_mode`: None
458
+ - `dispatch_batches`: None
459
+ - `split_batches`: None
460
+ - `include_tokens_per_second`: False
461
+ - `include_num_input_tokens_seen`: False
462
+ - `neftune_noise_alpha`: None
463
+ - `optim_target_modules`: None
464
+ - `batch_eval_metrics`: False
465
+ - `eval_on_start`: False
466
+ - `batch_sampler`: batch_sampler
467
+ - `multi_dataset_batch_sampler`: proportional
468
+
469
+ </details>
470
+
471
+ ### Training Logs
472
+ | Epoch | Step | Training Loss | max_ap |
473
+ |:------:|:----:|:-------------:|:------:|
474
+ | None | 0 | - | 0.8131 |
475
+ | 0.3115 | 500 | 0.0256 | - |
476
+ | 0.6231 | 1000 | 0.0179 | - |
477
+ | 0.9346 | 1500 | 0.0165 | - |
478
+ | 1.2461 | 2000 | 0.0152 | - |
479
+ | 1.5576 | 2500 | 0.0148 | - |
480
+ | 1.8692 | 3000 | 0.0144 | - |
481
+ | 2.0 | 3210 | - | 0.9355 |
482
+
483
+
484
+ ### Framework Versions
485
+ - Python: 3.10.12
486
+ - Sentence Transformers: 3.0.1
487
+ - Transformers: 4.42.4
488
+ - PyTorch: 2.4.0+cu121
489
+ - Accelerate: 0.32.1
490
+ - Datasets: 2.21.0
491
+ - Tokenizers: 0.19.1
492
+
493
+ ## Citation
494
+
495
+ ### BibTeX
496
+
497
+ #### Sentence Transformers
498
+ ```bibtex
499
+ @inproceedings{reimers-2019-sentence-bert,
500
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
501
+ author = "Reimers, Nils and Gurevych, Iryna",
502
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
503
+ month = "11",
504
+ year = "2019",
505
+ publisher = "Association for Computational Linguistics",
506
+ url = "https://arxiv.org/abs/1908.10084",
507
+ }
508
+ ```
509
+
510
+ #### ContrastiveLoss
511
+ ```bibtex
512
+ @inproceedings{hadsell2006dimensionality,
513
+ author={Hadsell, R. and Chopra, S. and LeCun, Y.},
514
+ booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
515
+ title={Dimensionality Reduction by Learning an Invariant Mapping},
516
+ year={2006},
517
+ volume={2},
518
+ number={},
519
+ pages={1735-1742},
520
+ doi={10.1109/CVPR.2006.100}
521
+ }
522
+ ```
523
+
524
+ <!--
525
+ ## Glossary
526
+
527
+ *Clearly define terms in order to be accessible across audiences.*
528
+ -->
529
+
530
+ <!--
531
+ ## Model Card Authors
532
+
533
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
534
+ -->
535
+
536
+ <!--
537
+ ## Model Card Contact
538
+
539
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
540
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.42.4",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bea1729e8232abb0d1fa1f6312b739a8d711893b3780e11b7df328518c42dfef
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "mask_token": "<mask>",
50
+ "max_length": 128,
51
+ "model_max_length": 128,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "<unk>"
64
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260