File size: 1,802 Bytes
46a111a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
base_model: DeepPavlov/rubert-base-cased-conversational
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: rubert-base-cased-conversational_ner-v3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# rubert-base-cased-conversational_ner-v3

This model is a fine-tuned version of [DeepPavlov/rubert-base-cased-conversational](https://huggingface.co/DeepPavlov/rubert-base-cased-conversational) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1204
- Precision: 0.7484
- Recall: 0.7987
- F1: 0.7727
- Accuracy: 0.9242

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 75   | 0.2186          | 0.4860    | 0.5839 | 0.5305 | 0.8634   |
| No log        | 2.0   | 150  | 0.1380          | 0.6886    | 0.7718 | 0.7278 | 0.9200   |
| No log        | 3.0   | 225  | 0.1204          | 0.7484    | 0.7987 | 0.7727 | 0.9242   |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.0.1
- Datasets 2.14.4
- Tokenizers 0.13.3