Xiaowen-dg commited on
Commit
d049fa4
1 Parent(s): 4b07785

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +274 -0
README.md ADDED
@@ -0,0 +1,274 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-Nemo-Base-2407
3
+ language:
4
+ - en
5
+ - fr
6
+ - de
7
+ - es
8
+ - it
9
+ - pt
10
+ - ru
11
+ - zh
12
+ - ja
13
+ license: apache-2.0
14
+ extra_gated_description: If you want to learn more about how we process your personal
15
+ data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
16
+ model-index:
17
+ - name: Mistral-Nemo-Instruct-2407
18
+ results: []
19
+ ---
20
+
21
+ # Model Card for Mistral-Nemo-Instruct-2407
22
+
23
+ The Mistral-Nemo-Instruct-2407 Large Language Model (LLM) is an instruct fine-tuned version of the [Mistral-Nemo-Base-2407](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407). Trained jointly by Mistral AI and NVIDIA, it significantly outperforms existing models smaller or similar in size.
24
+
25
+ For more details about this model please refer to our release [blog post](https://mistral.ai/news/mistral-nemo/).
26
+
27
+ ## Key features
28
+ - Released under the **Apache 2 License**
29
+ - Pre-trained and instructed versions
30
+ - Trained with a **128k context window**
31
+ - Trained on a large proportion of **multilingual and code data**
32
+ - Drop-in replacement of Mistral 7B
33
+
34
+ ## Model Architecture
35
+ Mistral Nemo is a transformer model, with the following architecture choices:
36
+ - **Layers:** 40
37
+ - **Dim:** 5,120
38
+ - **Head dim:** 128
39
+ - **Hidden dim:** 14,336
40
+ - **Activation Function:** SwiGLU
41
+ - **Number of heads:** 32
42
+ - **Number of kv-heads:** 8 (GQA)
43
+ - **Vocabulary size:** 2**17 ~= 128k
44
+ - **Rotary embeddings (theta = 1M)**
45
+
46
+ ## Metrics
47
+
48
+ ### Main Benchmarks
49
+
50
+ | Benchmark | Score |
51
+ | --- | --- |
52
+ | HellaSwag (0-shot) | 83.5% |
53
+ | Winogrande (0-shot) | 76.8% |
54
+ | OpenBookQA (0-shot) | 60.6% |
55
+ | CommonSenseQA (0-shot) | 70.4% |
56
+ | TruthfulQA (0-shot) | 50.3% |
57
+ | MMLU (5-shot) | 68.0% |
58
+ | TriviaQA (5-shot) | 73.8% |
59
+ | NaturalQuestions (5-shot) | 31.2% |
60
+
61
+ ### Multilingual Benchmarks (MMLU)
62
+
63
+ | Language | Score |
64
+ | --- | --- |
65
+ | French | 62.3% |
66
+ | German | 62.7% |
67
+ | Spanish | 64.6% |
68
+ | Italian | 61.3% |
69
+ | Portuguese | 63.3% |
70
+ | Russian | 59.2% |
71
+ | Chinese | 59.0% |
72
+ | Japanese | 59.0% |
73
+
74
+ ## Usage
75
+
76
+ The model can be used with three different frameworks
77
+
78
+ - [`mistral_inference`](https://github.com/mistralai/mistral-inference): See [here](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407#mistral-inference)
79
+ - [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers)
80
+ - [`NeMo`](https://github.com/NVIDIA/NeMo): See [nvidia/Mistral-NeMo-12B-Instruct](https://huggingface.co/nvidia/Mistral-NeMo-12B-Instruct)
81
+
82
+ ### Mistral Inference
83
+
84
+ #### Install
85
+
86
+ It is recommended to use `mistralai/Mistral-Nemo-Instruct-2407` with [mistral-inference](https://github.com/mistralai/mistral-inference). For HF transformers code snippets, please keep scrolling.
87
+
88
+ ```
89
+ pip install mistral_inference
90
+ ```
91
+
92
+ #### Download
93
+
94
+ ```py
95
+ from huggingface_hub import snapshot_download
96
+ from pathlib import Path
97
+
98
+ mistral_models_path = Path.home().joinpath('mistral_models', 'Nemo-Instruct')
99
+ mistral_models_path.mkdir(parents=True, exist_ok=True)
100
+
101
+ snapshot_download(repo_id="mistralai/Mistral-Nemo-Instruct-2407", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path)
102
+ ```
103
+
104
+ #### Chat
105
+
106
+ After installing `mistral_inference`, a `mistral-chat` CLI command should be available in your environment. You can chat with the model using
107
+
108
+ ```
109
+ mistral-chat $HOME/mistral_models/Nemo-Instruct --instruct --max_tokens 256 --temperature 0.35
110
+ ```
111
+
112
+ *E.g.* Try out something like:
113
+ ```
114
+ How expensive would it be to ask a window cleaner to clean all windows in Paris. Make a reasonable guess in US Dollar.
115
+ ```
116
+
117
+ #### Instruct following
118
+
119
+ ```py
120
+ from mistral_inference.transformer import Transformer
121
+ from mistral_inference.generate import generate
122
+
123
+ from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
124
+ from mistral_common.protocol.instruct.messages import UserMessage
125
+ from mistral_common.protocol.instruct.request import ChatCompletionRequest
126
+
127
+ tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json")
128
+ model = Transformer.from_folder(mistral_models_path)
129
+
130
+ prompt = "How expensive would it be to ask a window cleaner to clean all windows in Paris. Make a reasonable guess in US Dollar."
131
+
132
+ completion_request = ChatCompletionRequest(messages=[UserMessage(content=prompt)])
133
+
134
+ tokens = tokenizer.encode_chat_completion(completion_request).tokens
135
+
136
+ out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.35, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
137
+ result = tokenizer.decode(out_tokens[0])
138
+
139
+ print(result)
140
+ ```
141
+
142
+ #### Function calling
143
+
144
+ ```py
145
+ from mistral_common.protocol.instruct.tool_calls import Function, Tool
146
+ from mistral_inference.transformer import Transformer
147
+ from mistral_inference.generate import generate
148
+
149
+ from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
150
+ from mistral_common.protocol.instruct.messages import UserMessage
151
+ from mistral_common.protocol.instruct.request import ChatCompletionRequest
152
+
153
+
154
+ tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json")
155
+ model = Transformer.from_folder(mistral_models_path)
156
+
157
+ completion_request = ChatCompletionRequest(
158
+ tools=[
159
+ Tool(
160
+ function=Function(
161
+ name="get_current_weather",
162
+ description="Get the current weather",
163
+ parameters={
164
+ "type": "object",
165
+ "properties": {
166
+ "location": {
167
+ "type": "string",
168
+ "description": "The city and state, e.g. San Francisco, CA",
169
+ },
170
+ "format": {
171
+ "type": "string",
172
+ "enum": ["celsius", "fahrenheit"],
173
+ "description": "The temperature unit to use. Infer this from the users location.",
174
+ },
175
+ },
176
+ "required": ["location", "format"],
177
+ },
178
+ )
179
+ )
180
+ ],
181
+ messages=[
182
+ UserMessage(content="What's the weather like today in Paris?"),
183
+ ],
184
+ )
185
+
186
+ tokens = tokenizer.encode_chat_completion(completion_request).tokens
187
+
188
+ out_tokens, _ = generate([tokens], model, max_tokens=256, temperature=0.35, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
189
+ result = tokenizer.decode(out_tokens[0])
190
+
191
+ print(result)
192
+ ```
193
+
194
+ ### Transformers
195
+
196
+ > [!IMPORTANT]
197
+ > NOTE: Until a new release has been made, you need to install transformers from source:
198
+ > ```sh
199
+ > pip install git+https://github.com/huggingface/transformers.git
200
+ > ```
201
+
202
+ If you want to use Hugging Face `transformers` to generate text, you can do something like this.
203
+
204
+ ```py
205
+ from transformers import pipeline
206
+
207
+ messages = [
208
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
209
+ {"role": "user", "content": "Who are you?"},
210
+ ]
211
+ chatbot = pipeline("text-generation", model="mistralai/Mistral-Nemo-Instruct-2407",max_new_tokens=128)
212
+ chatbot(messages)
213
+ ```
214
+
215
+ ## Function calling with `transformers`
216
+
217
+ To use this example, you'll need `transformers` version 4.42.0 or higher. Please see the
218
+ [function calling guide](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling)
219
+ in the `transformers` docs for more information.
220
+
221
+ ```python
222
+ from transformers import AutoModelForCausalLM, AutoTokenizer
223
+ import torch
224
+
225
+ model_id = "mistralai/Mistral-Nemo-Instruct-2407"
226
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
227
+
228
+ def get_current_weather(location: str, format: str):
229
+ """
230
+ Get the current weather
231
+
232
+ Args:
233
+ location: The city and state, e.g. San Francisco, CA
234
+ format: The temperature unit to use. Infer this from the users location. (choices: ["celsius", "fahrenheit"])
235
+ """
236
+ pass
237
+
238
+ conversation = [{"role": "user", "content": "What's the weather like in Paris?"}]
239
+ tools = [get_current_weather]
240
+
241
+ # format and tokenize the tool use prompt
242
+ inputs = tokenizer.apply_chat_template(
243
+ conversation,
244
+ tools=tools,
245
+ add_generation_prompt=True,
246
+ return_dict=True,
247
+ return_tensors="pt",
248
+ )
249
+
250
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
251
+
252
+ inputs.to(model.device)
253
+ outputs = model.generate(**inputs, max_new_tokens=1000)
254
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
255
+ ```
256
+
257
+ Note that, for reasons of space, this example does not show a complete cycle of calling a tool and adding the tool call and tool
258
+ results to the chat history so that the model can use them in its next generation. For a full tool calling example, please
259
+ see the [function calling guide](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling),
260
+ and note that Mistral **does** use tool call IDs, so these must be included in your tool calls and tool results. They should be
261
+ exactly 9 alphanumeric characters.
262
+
263
+ > [!TIP]
264
+ > Unlike previous Mistral models, Mistral Nemo requires smaller temperatures. We recommend to use a temperature of 0.3.
265
+
266
+ ## Limitations
267
+
268
+ The Mistral Nemo Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
269
+ It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
270
+ make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
271
+
272
+ ## The Mistral AI Team
273
+
274
+ Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Alok Kothari, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Augustin Garreau, Austin Birky, Bam4d, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Carole Rambaud, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gaspard Blanchet, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Henri Roussez, Hichem Sattouf, Ian Mack, Jean-Malo Delignon, Jessica Chudnovsky, Justus Murke, Kartik Khandelwal, Lawrence Stewart, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Marjorie Janiewicz, Mickaël Seznec, Nicolas Schuhl, Niklas Muhs, Olivier de Garrigues, Patrick von Platen, Paul Jacob, Pauline Buche, Pavan Kumar Reddy, Perry Savas, Pierre Stock, Romain Sauvestre, Sagar Vaze, Sandeep Subramanian, Saurabh Garg, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibault Schueller, Thibaut Lavril, Thomas Wang, Théophile Gervet, Timothée Lacroix, Valera Nemychnikova, Wendy Shang, William El Sayed, William Marshall