update readme
Browse files
README.md
CHANGED
@@ -8,7 +8,7 @@ datasets:
|
|
8 |
## Model description
|
9 |
**mT5_base_yoruba_adr** is a **automatic diacritics restoration** model for Yorùbá language based on a fine-tuned mT5-base model. It achieves the **state-of-the-art performance** for adding the correct diacritics or tonal marks to Yorùbá texts.
|
10 |
|
11 |
-
Specifically, this model is a *mT5_base* model that was fine-tuned on JW300 Yorùbá corpus and
|
12 |
## Intended uses & limitations
|
13 |
#### How to use
|
14 |
You can use this model with Transformers *pipeline* for NER.
|
@@ -17,7 +17,7 @@ from transformers import AutoTokenizer, AutoModelForTokenClassification
|
|
17 |
from transformers import pipeline
|
18 |
tokenizer = AutoTokenizer.from_pretrained("")
|
19 |
model = AutoModelForTokenClassification.from_pretrained("")
|
20 |
-
nlp = pipeline("
|
21 |
example = "Emir of Kano turban Zhang wey don spend 18 years for Nigeria"
|
22 |
ner_results = nlp(example)
|
23 |
print(ner_results)
|
|
|
8 |
## Model description
|
9 |
**mT5_base_yoruba_adr** is a **automatic diacritics restoration** model for Yorùbá language based on a fine-tuned mT5-base model. It achieves the **state-of-the-art performance** for adding the correct diacritics or tonal marks to Yorùbá texts.
|
10 |
|
11 |
+
Specifically, this model is a *mT5_base* model that was fine-tuned on JW300 Yorùbá corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt)
|
12 |
## Intended uses & limitations
|
13 |
#### How to use
|
14 |
You can use this model with Transformers *pipeline* for NER.
|
|
|
17 |
from transformers import pipeline
|
18 |
tokenizer = AutoTokenizer.from_pretrained("")
|
19 |
model = AutoModelForTokenClassification.from_pretrained("")
|
20 |
+
nlp = pipeline("", model=model, tokenizer=tokenizer)
|
21 |
example = "Emir of Kano turban Zhang wey don spend 18 years for Nigeria"
|
22 |
ner_results = nlp(example)
|
23 |
print(ner_results)
|