Hugging Face's logo --- language: sw datasets: --- # xlm-roberta-base-finetuned-swahili ## Model description **xlm-roberta-base-finetuned-swahili** is a **Swahili RoBERTa** model obtained by fine-tuning **xlm-roberta-base** model on Swahili language texts. It provides **better performance** than the XLM-RoBERTa on text classification and named entity recognition datasets. Specifically, this model is a *xlm-roberta-base* model that was fine-tuned on Swahili corpus. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for masked token prediction. ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='Davlan/xlm-roberta-base-finetuned-swahili') >>> unmasker("Jumatatu, Bwana Kagame alielezea shirika la France24 huko kwamba hakuna uhalifu ulitendwa") [{'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko Ufaransa kwamba hakuna uhalifu ulitendwa', 'score': 0.5077782273292542, 'token': 190096, 'token_str': 'Ufaransa'}, {'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko Paris kwamba hakuna uhalifu ulitendwa', 'score': 0.3657738268375397, 'token': 7270, 'token_str': 'Paris'}, {'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko Gabon kwamba hakuna uhalifu ulitendwa', 'score': 0.01592041552066803, 'token': 176392, 'token_str': 'Gabon'}, {'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko France kwamba hakuna uhalifu ulitendwa', 'score': 0.010881908237934113, 'token': 9942, 'token_str': 'France'}, {'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko Marseille kwamba hakuna uhalifu ulitendwa', 'score': 0.009554869495332241, 'token': 185918, 'token_str': 'Marseille'}] ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on [Swahili CC-100](http://data.statmt.org/cc-100/) ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (F-score, average over 5 runs) Dataset| XLM-R F1 | sw_roberta F1 -|-|- [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 87.55 | 89.46 ### BibTeX entry and citation info By David Adelani ``` ```