File size: 1,747 Bytes
0ea9b57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
language:
- ko
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
datasets:
- AIHub/noise
model-index:
- name: Whisper Base Noise Ko - Dearlie
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Base Noise Ko - Dearlie
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Noise Data dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3670
- Cer: 57.4924
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 1.6034 | 0.8780 | 1000 | 1.6217 | 75.3884 |
| 1.4053 | 1.7559 | 2000 | 1.4598 | 60.7893 |
| 1.2681 | 2.6339 | 3000 | 1.3881 | 61.1636 |
| 1.1608 | 3.5119 | 4000 | 1.3670 | 57.4924 |
### Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|