DeathReaper0965
commited on
Commit
•
563fb61
1
Parent(s):
149af30
Upload PPO based LunarLander-v2 Agent trained with MLP Policy for 100M steps
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-mlp-LunarLander-v2.zip +3 -0
- ppo-mlp-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-mlp-LunarLander-v2/data +92 -0
- ppo-mlp-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-mlp-LunarLander-v2/policy.pth +3 -0
- ppo-mlp-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-mlp-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 302.99 +/- 20.23
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f124846b820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f124846b8b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f124846b940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f124846b9d0>", "_build": "<function ActorCriticPolicy._build at 0x7f124846ba60>", "forward": "<function ActorCriticPolicy.forward at 0x7f124846baf0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f124846bb80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f124846bc10>", "_predict": "<function ActorCriticPolicy._predict at 0x7f124846bca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f124846bd30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f124846bdc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f124846be50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f124846c680>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 100007936, "_total_timesteps": 100000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679616981410490396, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -7.935999999997279e-05, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInplgOFdYckCUhpRSlIwBbJRLkowBdJRHQPF51AfJV811fZQoaAZoCWgPQwjezOhHg7JzQJSGlFKUaBVLuWgWR0DxedRXU6PsdX2UKGgGaAloD0MISx5Pyw+YcECUhpRSlGgVS5toFkdA8Xoehx1gY3V9lChoBmgJaA9DCENwXMZNrXFAlIaUUpRoFUukaBZHQPF6H29i+cp1fZQoaAZoCWgPQwgcBvNXiLhyQJSGlFKUaBVLtmgWR0DxeiA+X7cgdX2UKGgGaAloD0MI+Wncm1+6cUCUhpRSlGgVS6VoFkdA8XogXUMG5nV9lChoBmgJaA9DCJRnXg57xXFAlIaUUpRoFUuUaBZHQPF6I9LRKHx1fZQoaAZoCWgPQwg57Sk5J91yQJSGlFKUaBVLsGgWR0DxeiRtPHktdX2UKGgGaAloD0MIuycPCzXwc0CUhpRSlGgVS8FoFkdA8XokY3WFvnV9lChoBmgJaA9DCAQ3UrYIM3FAlIaUUpRoFUuVaBZHQPF6Jb0voNd1fZQoaAZoCWgPQwhcyCO4kUdzQJSGlFKUaBVLxmgWR0DxeiYWTX8PdX2UKGgGaAloD0MINPPkmgLOckCUhpRSlGgVS7xoFkdA8XomgdKdx3V9lChoBmgJaA9DCGQFvw1xknFAlIaUUpRoFUuZaBZHQPF6J0Jmdy11fZQoaAZoCWgPQwg5tp4hHBNyQJSGlFKUaBVLqWgWR0DxeioePq9odX2UKGgGaAloD0MIBKkUO1quckCUhpRSlGgVS5poFkdA8Xoq9JnQIHV9lChoBmgJaA9DCFMkXwnkZXBAlIaUUpRoFUuXaBZHQPF6KvQD3dt1fZQoaAZoCWgPQwgVxausralzQJSGlFKUaBVLs2gWR0Dxeiy2vStvdX2UKGgGaAloD0MIkNeDSTEbc0CUhpRSlGgVS7doFkdA8Xos5r+HanV9lChoBmgJaA9DCNy5MNILGXBAlIaUUpRoFUubaBZHQPF6Lull9Sd1fZQoaAZoCWgPQwgnF2Ng3axwQJSGlFKUaBVLoWgWR0DxejBbX6IndX2UKGgGaAloD0MIMgIqHEEBckCUhpRSlGgVS55oFkdA8Xow53xFzHV9lChoBmgJaA9DCMeA7PUusXFAlIaUUpRoFUuhaBZHQPF6MR9/jKh1fZQoaAZoCWgPQwiIDRZO0hJwQJSGlFKUaBVLlGgWR0DxejUCUHIIdX2UKGgGaAloD0MIaObJNYWBckCUhpRSlGgVS6toFkdA8Xo2Oqebu3V9lChoBmgJaA9DCB2Txf0HxHJAlIaUUpRoFUuwaBZHQPF6NuYc/+t1fZQoaAZoCWgPQwjGi4UhMv1zQJSGlFKUaBVLumgWR0Dxejdgy/KydX2UKGgGaAloD0MIcyoZACptb0CUhpRSlGgVS6NoFkdA8Xo3iGi5/nV9lChoBmgJaA9DCMi3dw26xnBAlIaUUpRoFUukaBZHQPF6OFXPqs51fZQoaAZoCWgPQwiE8j6OJtpxQJSGlFKUaBVLsWgWR0DxejiU0vXcdX2UKGgGaAloD0MIIlUUr7JzcECUhpRSlGgVS5loFkdA8Xo60dvKl3V9lChoBmgJaA9DCGMraFqiwXFAlIaUUpRoFUupaBZHQPF6O6zLOiZ1fZQoaAZoCWgPQwj1DrdDAx9xQJSGlFKUaBVLm2gWR0Dxej0BDG96dX2UKGgGaAloD0MIeuQPBp62ckCUhpRSlGgVS7NoFkdA8Xo9gSOBD3V9lChoBmgJaA9DCERq2sV0W3FAlIaUUpRoFUuqaBZHQPF6PmACnxd1fZQoaAZoCWgPQwiVLCeh9KpxQJSGlFKUaBVLhmgWR0Dxej8qhDgJdX2UKGgGaAloD0MIpdqn47EicUCUhpRSlGgVS5NoFkdA8Xo/wwj+rHV9lChoBmgJaA9DCEuS5/o+MnNAlIaUUpRoFUuaaBZHQPF6QPPppvh1fZQoaAZoCWgPQwgQ5+EEZvhyQJSGlFKUaBVLuWgWR0DxekIg2qDLdX2UKGgGaAloD0MItoZSe5FVckCUhpRSlGgVS4doFkdA8XpEM63iJnV9lChoBmgJaA9DCG03wTcNpXBAlIaUUpRoFUuYaBZHQPF6RPDm8ul1fZQoaAZoCWgPQwjvN9pxQ5JzQJSGlFKUaBVLmmgWR0Dxekii5NGmdX2UKGgGaAloD0MIJVgcznxQckCUhpRSlGgVS6loFkdA8XpJbeVLSXV9lChoBmgJaA9DCGyYofHEyHNAlIaUUpRoFUuwaBZHQPF6Sg6PsAx1fZQoaAZoCWgPQwi6TbhXZp9zQJSGlFKUaBVLvmgWR0Dxeksk43m3dX2UKGgGaAloD0MIKIBiZAmQckCUhpRSlGgVS7VoFkdA8XpL6d1+zHV9lChoBmgJaA9DCPXb14GzPXFAlIaUUpRoFUuiaBZHQPF6TUhX8wZ1fZQoaAZoCWgPQwiNQ/0ubG9wQJSGlFKUaBVLtGgWR0Dxek5O1v2odX2UKGgGaAloD0MIa39ne7QacECUhpRSlGgVS6VoFkdA8XpPe6iCa3V9lChoBmgJaA9DCA6CjlY1UnNAlIaUUpRoFUuzaBZHQPF6UHUgB911fZQoaAZoCWgPQwhJgnAF1DZyQJSGlFKUaBVLlmgWR0DxelGFcpsodX2UKGgGaAloD0MI+S6lLlnucUCUhpRSlGgVS4toFkdA8XpRmZNO/XV9lChoBmgJaA9DCHnMQGX80HNAlIaUUpRoFUuvaBZHQPF6UjzOHFh1fZQoaAZoCWgPQwjmdi/3SVF0QJSGlFKUaBVLwmgWR0DxelNUp/gBdX2UKGgGaAloD0MIhugQOJIPc0CUhpRSlGgVS7poFkdA8XpT5fICEHV9lChoBmgJaA9DCJGYoIZvUHBAlIaUUpRoFUuaaBZHQPF6VXkbPyF1fZQoaAZoCWgPQwjsaYe/5opzQJSGlFKUaBVLrGgWR0Dxelam51/2dX2UKGgGaAloD0MIQfFjzJ15ckCUhpRSlGgVS4poFkdA8XpYWknCwnV9lChoBmgJaA9DCJAy4gJQTW9AlIaUUpRoFUuYaBZHQPF6WTuJDVp1fZQoaAZoCWgPQwiVnuklBntzQJSGlFKUaBVLo2gWR0DxelmptaZAdX2UKGgGaAloD0MIdm7ajFNrckCUhpRSlGgVS6loFkdA8XpddwBHTnV9lChoBmgJaA9DCGd+NQeI6nNAlIaUUpRoFUu3aBZHQPF6Xkj2SMd1fZQoaAZoCWgPQwi45LhTevNyQJSGlFKUaBVLtWgWR0DxemAjSofkdX2UKGgGaAloD0MIryMO2QBLckCUhpRSlGgVS7RoFkdA8XphEKNQ03V9lChoBmgJaA9DCGu7Cb4pJ3RAlIaUUpRoFUuzaBZHQPF6YiU8mrt1fZQoaAZoCWgPQwiD9urjoWxvQJSGlFKUaBVLlmgWR0DxemMDrJKbdX2UKGgGaAloD0MI/U0oREAxckCUhpRSlGgVS6xoFkdA8XpjaoMrmXV9lChoBmgJaA9DCGE1lrB2yHFAlIaUUpRoFUusaBZHQPF6Y4IiTt91fZQoaAZoCWgPQwgkJqjhWzxzQJSGlFKUaBVLuGgWR0DxemOiXpnpdX2UKGgGaAloD0MIKnReY9dAckCUhpRSlGgVS65oFkdA8XpkTYh+v3V9lChoBmgJaA9DCOS+1TqxvXJAlIaUUpRoFUuuaBZHQPF6Zd6MR6F1fZQoaAZoCWgPQwi7YHDN3TJyQJSGlFKUaBVLgWgWR0DxemX29crzdX2UKGgGaAloD0MIaRmp9xTAckCUhpRSlGgVS7JoFkdA8Xpn8CYCyXV9lChoBmgJaA9DCJc8npafWXBAlIaUUpRoFUuwaBZHQPF6aPQfIS11fZQoaAZoCWgPQwg9u3zrgytyQJSGlFKUaBVLnmgWR0DxemnAkLQYdX2UKGgGaAloD0MIBYnt7kGsc0CUhpRSlGgVS6BoFkdA8XpqYkAxSHV9lChoBmgJaA9DCBAf2PFfGm9AlIaUUpRoFUuIaBZHQPF6bhLBbfR1fZQoaAZoCWgPQwhb0HtjSKRzQJSGlFKUaBVLu2gWR0DxenEXOGCadX2UKGgGaAloD0MIXHLcKd1Qc0CUhpRSlGgVS5JoFkdA8XpxTG96C3V9lChoBmgJaA9DCJlH/mAghnNAlIaUUpRoFUu7aBZHQPF6ceU9pyp1fZQoaAZoCWgPQwjwT6kS5XpxQJSGlFKUaBVLp2gWR0DxenJ8nNPhdX2UKGgGaAloD0MIw0Xu6SoGckCUhpRSlGgVS5hoFkdA8Xpy2hM8HXV9lChoBmgJaA9DCBu4A3VKLXNAlIaUUpRoFUuVaBZHQPF6cvMbFS91fZQoaAZoCWgPQwgX1/hM9idyQJSGlFKUaBVLqGgWR0DxenT9Q40edX2UKGgGaAloD0MIHt5zYDmpc0CUhpRSlGgVS69oFkdA8Xp1kv4/NnV9lChoBmgJaA9DCL8OnDOiV3NAlIaUUpRoFUu2aBZHQPF6dw9r4351fZQoaAZoCWgPQwiLNPEO8J1zQJSGlFKUaBVLvGgWR0Dxenl1tO2zdX2UKGgGaAloD0MIH4MVpxo6cUCUhpRSlGgVS59oFkdA8Xp5j/6wdXV9lChoBmgJaA9DCGU1XU80ZXNAlIaUUpRoFUuuaBZHQPF6eh6F/QV1fZQoaAZoCWgPQwjA7QkSG2RyQJSGlFKUaBVLxGgWR0Dxeno+rELqdX2UKGgGaAloD0MIDkxuFBkJckCUhpRSlGgVS6JoFkdA8Xp6qMzdlHV9lChoBmgJaA9DCDTbFfqgXHFAlIaUUpRoFUufaBZHQPF6evHq/ud1fZQoaAZoCWgPQwhDjxg9d8FxQJSGlFKUaBVLkmgWR0Dxen/VSGahdX2UKGgGaAloD0MIYf91btq+cUCUhpRSlGgVS7FoFkdA8XqASK77K3V9lChoBmgJaA9DCAu45/nTDHJAlIaUUpRoFUuPaBZHQPF6gUMAmzB1fZQoaAZoCWgPQwiVKlH2VtFxQJSGlFKUaBVLomgWR0DxeoHEBbOedX2UKGgGaAloD0MI2A3bFqUAcUCUhpRSlGgVS6doFkdA8XqC3LFGX3V9lChoBmgJaA9DCJDAH35+YHFAlIaUUpRoFUumaBZHQPF6g8/GEPF1fZQoaAZoCWgPQwgp7Q2+cFN0QJSGlFKUaBVLrmgWR0DxeoQ3UhFFdX2UKGgGaAloD0MIH0sfuqBvcUCUhpRSlGgVS5poFkdA8XqFVlK9PHV9lChoBmgJaA9DCErQX+iRAnJAlIaUUpRoFUuoaBZHQPF6hibmU4d1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 24416, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL3BwYWJvbHUvYW5hY29uZGEzL2VudnMvZGVlcFJML2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS9wcGFib2x1L2FuYWNvbmRhMy9lbnZzL2RlZXBSTC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-mlp-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:379f004fb3cc9dcf6e2540032f3e461a4c4181caa3253137e3f0ba2282e05ca4
|
3 |
+
size 146564
|
ppo-mlp-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-mlp-LunarLander-v2/data
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f124846b820>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f124846b8b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f124846b940>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f124846b9d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f124846ba60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f124846baf0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f124846bb80>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f124846bc10>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f124846bca0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f124846bd30>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f124846bdc0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f124846be50>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f124846c680>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 1,
|
46 |
+
"num_timesteps": 100007936,
|
47 |
+
"_total_timesteps": 100000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1679616981410490396,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": null,
|
59 |
+
"_last_episode_starts": {
|
60 |
+
":type:": "<class 'numpy.ndarray'>",
|
61 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
62 |
+
},
|
63 |
+
"_last_original_obs": null,
|
64 |
+
"_episode_num": 0,
|
65 |
+
"use_sde": false,
|
66 |
+
"sde_sample_freq": -1,
|
67 |
+
"_current_progress_remaining": -7.935999999997279e-05,
|
68 |
+
"ep_info_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInplgOFdYckCUhpRSlIwBbJRLkowBdJRHQPF51AfJV811fZQoaAZoCWgPQwjezOhHg7JzQJSGlFKUaBVLuWgWR0DxedRXU6PsdX2UKGgGaAloD0MISx5Pyw+YcECUhpRSlGgVS5toFkdA8Xoehx1gY3V9lChoBmgJaA9DCENwXMZNrXFAlIaUUpRoFUukaBZHQPF6H29i+cp1fZQoaAZoCWgPQwgcBvNXiLhyQJSGlFKUaBVLtmgWR0DxeiA+X7cgdX2UKGgGaAloD0MI+Wncm1+6cUCUhpRSlGgVS6VoFkdA8XogXUMG5nV9lChoBmgJaA9DCJRnXg57xXFAlIaUUpRoFUuUaBZHQPF6I9LRKHx1fZQoaAZoCWgPQwg57Sk5J91yQJSGlFKUaBVLsGgWR0DxeiRtPHktdX2UKGgGaAloD0MIuycPCzXwc0CUhpRSlGgVS8FoFkdA8XokY3WFvnV9lChoBmgJaA9DCAQ3UrYIM3FAlIaUUpRoFUuVaBZHQPF6Jb0voNd1fZQoaAZoCWgPQwhcyCO4kUdzQJSGlFKUaBVLxmgWR0DxeiYWTX8PdX2UKGgGaAloD0MINPPkmgLOckCUhpRSlGgVS7xoFkdA8XomgdKdx3V9lChoBmgJaA9DCGQFvw1xknFAlIaUUpRoFUuZaBZHQPF6J0Jmdy11fZQoaAZoCWgPQwg5tp4hHBNyQJSGlFKUaBVLqWgWR0DxeioePq9odX2UKGgGaAloD0MIBKkUO1quckCUhpRSlGgVS5poFkdA8Xoq9JnQIHV9lChoBmgJaA9DCFMkXwnkZXBAlIaUUpRoFUuXaBZHQPF6KvQD3dt1fZQoaAZoCWgPQwgVxausralzQJSGlFKUaBVLs2gWR0Dxeiy2vStvdX2UKGgGaAloD0MIkNeDSTEbc0CUhpRSlGgVS7doFkdA8Xos5r+HanV9lChoBmgJaA9DCNy5MNILGXBAlIaUUpRoFUubaBZHQPF6Lull9Sd1fZQoaAZoCWgPQwgnF2Ng3axwQJSGlFKUaBVLoWgWR0DxejBbX6IndX2UKGgGaAloD0MIMgIqHEEBckCUhpRSlGgVS55oFkdA8Xow53xFzHV9lChoBmgJaA9DCMeA7PUusXFAlIaUUpRoFUuhaBZHQPF6MR9/jKh1fZQoaAZoCWgPQwiIDRZO0hJwQJSGlFKUaBVLlGgWR0DxejUCUHIIdX2UKGgGaAloD0MIaObJNYWBckCUhpRSlGgVS6toFkdA8Xo2Oqebu3V9lChoBmgJaA9DCB2Txf0HxHJAlIaUUpRoFUuwaBZHQPF6NuYc/+t1fZQoaAZoCWgPQwjGi4UhMv1zQJSGlFKUaBVLumgWR0Dxejdgy/KydX2UKGgGaAloD0MIcyoZACptb0CUhpRSlGgVS6NoFkdA8Xo3iGi5/nV9lChoBmgJaA9DCMi3dw26xnBAlIaUUpRoFUukaBZHQPF6OFXPqs51fZQoaAZoCWgPQwiE8j6OJtpxQJSGlFKUaBVLsWgWR0DxejiU0vXcdX2UKGgGaAloD0MIIlUUr7JzcECUhpRSlGgVS5loFkdA8Xo60dvKl3V9lChoBmgJaA9DCGMraFqiwXFAlIaUUpRoFUupaBZHQPF6O6zLOiZ1fZQoaAZoCWgPQwj1DrdDAx9xQJSGlFKUaBVLm2gWR0Dxej0BDG96dX2UKGgGaAloD0MIeuQPBp62ckCUhpRSlGgVS7NoFkdA8Xo9gSOBD3V9lChoBmgJaA9DCERq2sV0W3FAlIaUUpRoFUuqaBZHQPF6PmACnxd1fZQoaAZoCWgPQwiVLCeh9KpxQJSGlFKUaBVLhmgWR0Dxej8qhDgJdX2UKGgGaAloD0MIpdqn47EicUCUhpRSlGgVS5NoFkdA8Xo/wwj+rHV9lChoBmgJaA9DCEuS5/o+MnNAlIaUUpRoFUuaaBZHQPF6QPPppvh1fZQoaAZoCWgPQwgQ5+EEZvhyQJSGlFKUaBVLuWgWR0DxekIg2qDLdX2UKGgGaAloD0MItoZSe5FVckCUhpRSlGgVS4doFkdA8XpEM63iJnV9lChoBmgJaA9DCG03wTcNpXBAlIaUUpRoFUuYaBZHQPF6RPDm8ul1fZQoaAZoCWgPQwjvN9pxQ5JzQJSGlFKUaBVLmmgWR0Dxekii5NGmdX2UKGgGaAloD0MIJVgcznxQckCUhpRSlGgVS6loFkdA8XpJbeVLSXV9lChoBmgJaA9DCGyYofHEyHNAlIaUUpRoFUuwaBZHQPF6Sg6PsAx1fZQoaAZoCWgPQwi6TbhXZp9zQJSGlFKUaBVLvmgWR0Dxeksk43m3dX2UKGgGaAloD0MIKIBiZAmQckCUhpRSlGgVS7VoFkdA8XpL6d1+zHV9lChoBmgJaA9DCPXb14GzPXFAlIaUUpRoFUuiaBZHQPF6TUhX8wZ1fZQoaAZoCWgPQwiNQ/0ubG9wQJSGlFKUaBVLtGgWR0Dxek5O1v2odX2UKGgGaAloD0MIa39ne7QacECUhpRSlGgVS6VoFkdA8XpPe6iCa3V9lChoBmgJaA9DCA6CjlY1UnNAlIaUUpRoFUuzaBZHQPF6UHUgB911fZQoaAZoCWgPQwhJgnAF1DZyQJSGlFKUaBVLlmgWR0DxelGFcpsodX2UKGgGaAloD0MI+S6lLlnucUCUhpRSlGgVS4toFkdA8XpRmZNO/XV9lChoBmgJaA9DCHnMQGX80HNAlIaUUpRoFUuvaBZHQPF6UjzOHFh1fZQoaAZoCWgPQwjmdi/3SVF0QJSGlFKUaBVLwmgWR0DxelNUp/gBdX2UKGgGaAloD0MIhugQOJIPc0CUhpRSlGgVS7poFkdA8XpT5fICEHV9lChoBmgJaA9DCJGYoIZvUHBAlIaUUpRoFUuaaBZHQPF6VXkbPyF1fZQoaAZoCWgPQwjsaYe/5opzQJSGlFKUaBVLrGgWR0Dxelam51/2dX2UKGgGaAloD0MIQfFjzJ15ckCUhpRSlGgVS4poFkdA8XpYWknCwnV9lChoBmgJaA9DCJAy4gJQTW9AlIaUUpRoFUuYaBZHQPF6WTuJDVp1fZQoaAZoCWgPQwiVnuklBntzQJSGlFKUaBVLo2gWR0DxelmptaZAdX2UKGgGaAloD0MIdm7ajFNrckCUhpRSlGgVS6loFkdA8XpddwBHTnV9lChoBmgJaA9DCGd+NQeI6nNAlIaUUpRoFUu3aBZHQPF6Xkj2SMd1fZQoaAZoCWgPQwi45LhTevNyQJSGlFKUaBVLtWgWR0DxemAjSofkdX2UKGgGaAloD0MIryMO2QBLckCUhpRSlGgVS7RoFkdA8XphEKNQ03V9lChoBmgJaA9DCGu7Cb4pJ3RAlIaUUpRoFUuzaBZHQPF6YiU8mrt1fZQoaAZoCWgPQwiD9urjoWxvQJSGlFKUaBVLlmgWR0DxemMDrJKbdX2UKGgGaAloD0MI/U0oREAxckCUhpRSlGgVS6xoFkdA8XpjaoMrmXV9lChoBmgJaA9DCGE1lrB2yHFAlIaUUpRoFUusaBZHQPF6Y4IiTt91fZQoaAZoCWgPQwgkJqjhWzxzQJSGlFKUaBVLuGgWR0DxemOiXpnpdX2UKGgGaAloD0MIKnReY9dAckCUhpRSlGgVS65oFkdA8XpkTYh+v3V9lChoBmgJaA9DCOS+1TqxvXJAlIaUUpRoFUuuaBZHQPF6Zd6MR6F1fZQoaAZoCWgPQwi7YHDN3TJyQJSGlFKUaBVLgWgWR0DxemX29crzdX2UKGgGaAloD0MIaRmp9xTAckCUhpRSlGgVS7JoFkdA8Xpn8CYCyXV9lChoBmgJaA9DCJc8npafWXBAlIaUUpRoFUuwaBZHQPF6aPQfIS11fZQoaAZoCWgPQwg9u3zrgytyQJSGlFKUaBVLnmgWR0DxemnAkLQYdX2UKGgGaAloD0MIBYnt7kGsc0CUhpRSlGgVS6BoFkdA8XpqYkAxSHV9lChoBmgJaA9DCBAf2PFfGm9AlIaUUpRoFUuIaBZHQPF6bhLBbfR1fZQoaAZoCWgPQwhb0HtjSKRzQJSGlFKUaBVLu2gWR0DxenEXOGCadX2UKGgGaAloD0MIXHLcKd1Qc0CUhpRSlGgVS5JoFkdA8XpxTG96C3V9lChoBmgJaA9DCJlH/mAghnNAlIaUUpRoFUu7aBZHQPF6ceU9pyp1fZQoaAZoCWgPQwjwT6kS5XpxQJSGlFKUaBVLp2gWR0DxenJ8nNPhdX2UKGgGaAloD0MIw0Xu6SoGckCUhpRSlGgVS5hoFkdA8Xpy2hM8HXV9lChoBmgJaA9DCBu4A3VKLXNAlIaUUpRoFUuVaBZHQPF6cvMbFS91fZQoaAZoCWgPQwgX1/hM9idyQJSGlFKUaBVLqGgWR0DxenT9Q40edX2UKGgGaAloD0MIHt5zYDmpc0CUhpRSlGgVS69oFkdA8Xp1kv4/NnV9lChoBmgJaA9DCL8OnDOiV3NAlIaUUpRoFUu2aBZHQPF6dw9r4351fZQoaAZoCWgPQwiLNPEO8J1zQJSGlFKUaBVLvGgWR0Dxenl1tO2zdX2UKGgGaAloD0MIH4MVpxo6cUCUhpRSlGgVS59oFkdA8Xp5j/6wdXV9lChoBmgJaA9DCGU1XU80ZXNAlIaUUpRoFUuuaBZHQPF6eh6F/QV1fZQoaAZoCWgPQwjA7QkSG2RyQJSGlFKUaBVLxGgWR0Dxeno+rELqdX2UKGgGaAloD0MIDkxuFBkJckCUhpRSlGgVS6JoFkdA8Xp6qMzdlHV9lChoBmgJaA9DCDTbFfqgXHFAlIaUUpRoFUufaBZHQPF6evHq/ud1fZQoaAZoCWgPQwhDjxg9d8FxQJSGlFKUaBVLkmgWR0Dxen/VSGahdX2UKGgGaAloD0MIYf91btq+cUCUhpRSlGgVS7FoFkdA8XqASK77K3V9lChoBmgJaA9DCAu45/nTDHJAlIaUUpRoFUuPaBZHQPF6gUMAmzB1fZQoaAZoCWgPQwiVKlH2VtFxQJSGlFKUaBVLomgWR0DxeoHEBbOedX2UKGgGaAloD0MI2A3bFqUAcUCUhpRSlGgVS6doFkdA8XqC3LFGX3V9lChoBmgJaA9DCJDAH35+YHFAlIaUUpRoFUumaBZHQPF6g8/GEPF1fZQoaAZoCWgPQwgp7Q2+cFN0QJSGlFKUaBVLrmgWR0DxeoQ3UhFFdX2UKGgGaAloD0MIH0sfuqBvcUCUhpRSlGgVS5poFkdA8XqFVlK9PHV9lChoBmgJaA9DCErQX+iRAnJAlIaUUpRoFUuoaBZHQPF6hibmU4d1ZS4="
|
71 |
+
},
|
72 |
+
"ep_success_buffer": {
|
73 |
+
":type:": "<class 'collections.deque'>",
|
74 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
75 |
+
},
|
76 |
+
"_n_updates": 24416,
|
77 |
+
"n_steps": 1024,
|
78 |
+
"gamma": 0.999,
|
79 |
+
"gae_lambda": 0.98,
|
80 |
+
"ent_coef": 0.01,
|
81 |
+
"vf_coef": 0.5,
|
82 |
+
"max_grad_norm": 0.5,
|
83 |
+
"batch_size": 64,
|
84 |
+
"n_epochs": 4,
|
85 |
+
"clip_range": {
|
86 |
+
":type:": "<class 'function'>",
|
87 |
+
":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL3BwYWJvbHUvYW5hY29uZGEzL2VudnMvZGVlcFJML2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS9wcGFib2x1L2FuYWNvbmRhMy9lbnZzL2RlZXBSTC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
88 |
+
},
|
89 |
+
"clip_range_vf": null,
|
90 |
+
"normalize_advantage": true,
|
91 |
+
"target_kl": null
|
92 |
+
}
|
ppo-mlp-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dcf4430c20c926f053a022a52515f66d0f575d210de28e2656fb11db5201c286
|
3 |
+
size 88057
|
ppo-mlp-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2c2d7963d35265096031967e70e3d099c70e14a5131e526b20158bb774fb42c
|
3 |
+
size 43393
|
ppo-mlp-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-mlp-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (196 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 302.9949164746263, "std_reward": 20.230862536543793, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-25T03:18:11.576964"}
|