File size: 7,416 Bytes
a8c8a23
aa69000
 
a8c8a23
82593b0
 
 
 
 
 
aa69000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8c8a23
82593b0
 
 
854f46f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82593b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa69000
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
---
language:
- en
license: apache-2.0
datasets:
- cerebras/SlimPajama-627B
- bigcode/starcoderdata
- HuggingFaceH4/ultrachat_200k
- HuggingFaceH4/ultrafeedback_binarized
widget:
- text: '<|system|>

    You are a chatbot who can help code!</s>

    <|user|>

    Write out the first 10 digits of the fibonacci sequence in Python and print it
    out to the CLI.</s>

    <|assistant|>

    '
model-index:
- name: TinyLlama-repeat
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 35.24
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deathsquad10/TinyLlama-repeat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 60.25
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deathsquad10/TinyLlama-repeat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 26.07
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deathsquad10/TinyLlama-repeat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 38.78
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deathsquad10/TinyLlama-repeat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 60.46
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deathsquad10/TinyLlama-repeat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 1.74
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deathsquad10/TinyLlama-repeat
      name: Open LLM Leaderboard
---
<div align="center">

# TinyLlama-1.1B ---My personal Test update Version 2

|    Tasks    |Version|Filter|n-shot| Metric |Value |   |Stderr|
|-------------|-------|------|-----:|--------|-----:|---|-----:|
|arc_challenge|Yaml   |none  |     0|acc     |0.3046|±  |0.0134|
|             |       |none  |     0|acc_norm|0.3234|±  |0.0137|
|arc_easy     |Yaml   |none  |     0|acc     |0.6077|±  |0.0100|
|             |       |none  |     0|acc_norm|0.5307|±  |0.0102|
|boolq        |Yaml   |none  |     0|acc     |0.5948|±  |0.0086|
|hellaswag    |Yaml   |none  |     0|acc     |0.4601|±  |0.0050|
|             |       |none  |     0|acc_norm|0.5987|±  |0.0049|
|openbookqa   |Yaml   |none  |     0|acc     |0.2420|±  |0.0192|
|             |       |none  |     0|acc_norm|0.3500|±  |0.0214|
|piqa         |Yaml   |none  |     0|acc     |0.7410|±  |0.0102|
|             |       |none  |     0|acc_norm|0.7405|±  |0.0102|
|winogrande   |Yaml   |none  |     0|acc     |0.6093|±  |0.0137|
</div>


https://github.com/jzhang38/TinyLlama

The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01. 


We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.

#### This Model
This is the chat model finetuned on top of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T). **We follow [HF's Zephyr](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/edit/main/README.md)'s training recipe.** The model was " initially fine-tuned on a variant of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT. 
We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contain 64k prompts and model completions that are ranked by GPT-4." 


#### How to use
You will need the transformers>=4.34
Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information.

```python
# Install transformers from source - only needed for versions <= v4.34
# pip install git+https://github.com/huggingface/transformers.git
# pip install accelerate
import torch
from transformers import pipeline
pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.bfloat16, device_map="auto")
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
    {
        "role": "system",
        "content": "You are a friendly chatbot who always responds in the style of a pirate",
    },
    {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
# <|system|>
# You are a friendly chatbot who always responds in the style of a pirate.</s>
# <|user|>
# How many helicopters can a human eat in one sitting?</s>
# <|assistant|>
# ...
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Deathsquad10__TinyLlama-repeat)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |37.09|
|AI2 Reasoning Challenge (25-Shot)|35.24|
|HellaSwag (10-Shot)              |60.25|
|MMLU (5-Shot)                    |26.07|
|TruthfulQA (0-shot)              |38.78|
|Winogrande (5-shot)              |60.46|
|GSM8k (5-shot)                   | 1.74|