|
""" |
|
cmd example |
|
You need a file called "sample.txt" (default path) with text to take tokens for prompts or supply --text_file "path/to/text.txt" as an argument to a text file. |
|
You can use our attached "sample.txt" file with one of Deci's blogs as a prompt. |
|
# Run this and record tokens per second (652 tokens per second on A10 for DeciLM-6b) |
|
python hf_benchmark_example.py --model Deci/DeciLM-6b-instruct |
|
# Run this and record tokens per second (136 tokens per second on A10 for meta-llama/Llama-2-7b-hf), CUDA OOM above batch size 8 |
|
python hf_benchmark_example.py --model meta-llama/Llama-2-7b-hf --batch_size 8 |
|
""" |
|
|
|
import json |
|
|
|
import datasets |
|
import torch |
|
import transformers |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser |
|
from argparse import ArgumentParser |
|
|
|
|
|
def parse_args(): |
|
parser = ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--model", |
|
required=True, |
|
help="Model to evaluate, provide a repo name in Hugging Face hub or a local path", |
|
) |
|
parser.add_argument( |
|
"--temperature", |
|
default=0.2, |
|
type=float |
|
) |
|
parser.add_argument( |
|
"--top_p", |
|
default=0.95, |
|
type=float |
|
) |
|
parser.add_argument( |
|
"--top_k", |
|
default=0, |
|
type=float |
|
) |
|
|
|
parser.add_argument( |
|
"--revision", |
|
default=None, |
|
help="Model revision to use", |
|
) |
|
parser.add_argument( |
|
"--iterations", |
|
type=int, |
|
default=6, |
|
help="Model revision to use", |
|
) |
|
parser.add_argument( |
|
"--batch_size", |
|
type=int, |
|
default=64, |
|
help="Batch size for evaluation on each worker, can be larger for HumanEval", |
|
|
|
) |
|
parser.add_argument( |
|
"--prompt_length", |
|
type=int, |
|
default=512, |
|
) |
|
parser.add_argument( |
|
"--max_new_tokens", |
|
type=int, |
|
default=512, |
|
help="Maximum length of generated sequence (prompt+generation)", |
|
) |
|
parser.add_argument( |
|
"--precision", |
|
type=str, |
|
default="bf16", |
|
help="Model precision, from: fp32, fp16 or bf16", |
|
) |
|
parser.add_argument( |
|
"--text_file", |
|
type=str, |
|
default="sample.txt", |
|
help="text file that will be used to generate tokens for prompts", |
|
) |
|
parser.add_argument( |
|
"--load_in_8bit", |
|
action="store_true", |
|
help="Load model in 8bit", |
|
) |
|
parser.add_argument( |
|
"--load_in_4bit", |
|
action="store_true", |
|
help="Load model in 4bit", |
|
) |
|
return parser.parse_args() |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
transformers.logging.set_verbosity_error() |
|
datasets.logging.set_verbosity_error() |
|
|
|
|
|
results = {} |
|
dict_precisions = { |
|
"fp32": torch.float32, |
|
"fp16": torch.float16, |
|
"bf16": torch.bfloat16, |
|
} |
|
if args.precision not in dict_precisions: |
|
raise ValueError( |
|
f"Non valid precision {args.precision}, choose from: fp16, fp32, bf16" |
|
) |
|
if args.load_in_8bit: |
|
print("Loading model in 8bit") |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
args.model, |
|
revision=args.revision, |
|
load_in_8bit=args.load_in_8bit, |
|
trust_remote_code=args.trust_remote_code, |
|
use_auth_token=args.use_auth_token, |
|
device_map={"": 'cuda'}, |
|
) |
|
elif args.load_in_4bit: |
|
print("Loading model in 4bit") |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
args.model, |
|
revision=args.revision, |
|
load_in_4bit=args.load_in_4bit, |
|
trust_remote_code=args.trust_remote_code, |
|
use_auth_token=args.use_auth_token, |
|
device_map={"": 'cuda'}, |
|
) |
|
else: |
|
print(f"Loading model in {args.precision}") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
args.model, |
|
torch_dtype=torch.bfloat16, |
|
trust_remote_code=True, |
|
use_auth_token=True |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
args.model, |
|
revision=args.revision, |
|
trust_remote_code=True, |
|
use_auth_token=True, |
|
) |
|
|
|
starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True) |
|
model.cuda() |
|
model.eval() |
|
|
|
with open(args.text_file, "r") as f: |
|
prompt = f.read() |
|
|
|
prompt = torch.tensor(tokenizer.encode(prompt))[:args.prompt_length].cuda() |
|
|
|
results = {'prefill': [], 'gen': [], 'max_new_tokens': args.max_new_tokens, 'prompt_length': args.prompt_length, 'model': args.model, 'batch_size': args.batch_size} |
|
inputs = prompt.repeat(args.batch_size, 1) |
|
|
|
|
|
print('start warmup') |
|
for _ in range(10): |
|
with torch.no_grad(): |
|
_ = model.generate( |
|
input_ids=inputs, |
|
max_new_tokens=1, |
|
do_sample=False, |
|
) |
|
print('finish warmup') |
|
torch.cuda.synchronize() |
|
|
|
for prefill_iter in range(args.iterations): |
|
starter.record() |
|
with torch.no_grad(): |
|
_ = model.generate( |
|
input_ids=inputs, |
|
max_new_tokens=1, |
|
do_sample=False, |
|
) |
|
ender.record() |
|
torch.cuda.synchronize() |
|
t = starter.elapsed_time(ender) / 1000 |
|
results['prefill'].append(t) |
|
print(f'{args.batch_size} prefill iter {prefill_iter} took: {t}') |
|
|
|
|
|
for gen_iter in range(args.iterations): |
|
starter.record() |
|
with torch.no_grad(): |
|
_ = model.generate( |
|
input_ids=inputs, |
|
max_new_tokens=args.max_new_tokens, |
|
do_sample=False, |
|
) |
|
ender.record() |
|
torch.cuda.synchronize() |
|
t = starter.elapsed_time(ender) / 1000 |
|
results['gen'].append(t) |
|
|
|
print(f'{args.batch_size} total generation iter {gen_iter} took: {t}') |
|
print(f'{args.batch_size * args.max_new_tokens / t} tokens per seconds') |
|
model_str = args.model.split('/')[-1] |
|
with open(f'timing_{model_str}_{args.batch_size}.json', 'w') as f: |
|
json.dump(results, f) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|