Adding throughput benchmark example
Browse files- hf_benchmark_example.py +202 -0
hf_benchmark_example.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
import torch
|
5 |
+
import transformers
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
|
7 |
+
from argparse import ArgumentParser
|
8 |
+
|
9 |
+
|
10 |
+
def parse_args():
|
11 |
+
parser = ArgumentParser()
|
12 |
+
|
13 |
+
parser.add_argument(
|
14 |
+
"--model",
|
15 |
+
required=True,
|
16 |
+
help="Model to evaluate, provide a repo name in Hugging Face hub or a local path",
|
17 |
+
)
|
18 |
+
parser.add_argument(
|
19 |
+
"--temperature",
|
20 |
+
default=0.2,
|
21 |
+
type=float
|
22 |
+
)
|
23 |
+
parser.add_argument(
|
24 |
+
"--top_p",
|
25 |
+
default=0.95,
|
26 |
+
type=float
|
27 |
+
)
|
28 |
+
parser.add_argument(
|
29 |
+
"--top_k",
|
30 |
+
default=0,
|
31 |
+
type=float
|
32 |
+
)
|
33 |
+
|
34 |
+
parser.add_argument(
|
35 |
+
"--revision",
|
36 |
+
default=None,
|
37 |
+
help="Model revision to use",
|
38 |
+
)
|
39 |
+
parser.add_argument(
|
40 |
+
"--iterations",
|
41 |
+
type=int,
|
42 |
+
default=6,
|
43 |
+
help="Model revision to use",
|
44 |
+
)
|
45 |
+
parser.add_argument(
|
46 |
+
"--batch_size",
|
47 |
+
type=int,
|
48 |
+
default=64,
|
49 |
+
help="Batch size for evaluation on each worker, can be larger for HumanEval",
|
50 |
+
|
51 |
+
)
|
52 |
+
parser.add_argument(
|
53 |
+
"--prompt_length",
|
54 |
+
type=int,
|
55 |
+
default=512,
|
56 |
+
)
|
57 |
+
parser.add_argument(
|
58 |
+
"--max_new_tokens",
|
59 |
+
type=int,
|
60 |
+
default=512,
|
61 |
+
help="Maximum length of generated sequence (prompt+generation)",
|
62 |
+
)
|
63 |
+
parser.add_argument(
|
64 |
+
"--precision",
|
65 |
+
type=str,
|
66 |
+
default="bf16",
|
67 |
+
help="Model precision, from: fp32, fp16 or bf16",
|
68 |
+
)
|
69 |
+
parser.add_argument(
|
70 |
+
"--text_file",
|
71 |
+
type=str,
|
72 |
+
default="sample.txt",
|
73 |
+
help="text file that will be used to generate tokens for prompts",
|
74 |
+
)
|
75 |
+
parser.add_argument(
|
76 |
+
"--load_in_8bit",
|
77 |
+
action="store_true",
|
78 |
+
help="Load model in 8bit",
|
79 |
+
)
|
80 |
+
parser.add_argument(
|
81 |
+
"--load_in_4bit",
|
82 |
+
action="store_true",
|
83 |
+
help="Load model in 4bit",
|
84 |
+
)
|
85 |
+
return parser.parse_args()
|
86 |
+
|
87 |
+
|
88 |
+
def main():
|
89 |
+
args = parse_args()
|
90 |
+
transformers.logging.set_verbosity_error()
|
91 |
+
datasets.logging.set_verbosity_error()
|
92 |
+
|
93 |
+
|
94 |
+
results = {}
|
95 |
+
dict_precisions = {
|
96 |
+
"fp32": torch.float32,
|
97 |
+
"fp16": torch.float16,
|
98 |
+
"bf16": torch.bfloat16,
|
99 |
+
}
|
100 |
+
if args.precision not in dict_precisions:
|
101 |
+
raise ValueError(
|
102 |
+
f"Non valid precision {args.precision}, choose from: fp16, fp32, bf16"
|
103 |
+
)
|
104 |
+
if args.load_in_8bit:
|
105 |
+
print("Loading model in 8bit")
|
106 |
+
# the model needs to fit in one GPU
|
107 |
+
model = AutoModelForCausalLM.from_pretrained(
|
108 |
+
args.model,
|
109 |
+
revision=args.revision,
|
110 |
+
load_in_8bit=args.load_in_8bit,
|
111 |
+
trust_remote_code=args.trust_remote_code,
|
112 |
+
use_auth_token=args.use_auth_token,
|
113 |
+
device_map={"": 'cuda'},
|
114 |
+
)
|
115 |
+
elif args.load_in_4bit:
|
116 |
+
print("Loading model in 4bit")
|
117 |
+
# the model needs to fit in one GPU
|
118 |
+
model = AutoModelForCausalLM.from_pretrained(
|
119 |
+
args.model,
|
120 |
+
revision=args.revision,
|
121 |
+
load_in_4bit=args.load_in_4bit,
|
122 |
+
trust_remote_code=args.trust_remote_code,
|
123 |
+
use_auth_token=args.use_auth_token,
|
124 |
+
device_map={"": 'cuda'},
|
125 |
+
)
|
126 |
+
else:
|
127 |
+
print(f"Loading model in {args.precision}")
|
128 |
+
model = AutoModelForCausalLM.from_pretrained(
|
129 |
+
args.model,
|
130 |
+
torch_dtype=torch.bfloat16,
|
131 |
+
trust_remote_code=True,
|
132 |
+
use_auth_token=True
|
133 |
+
)
|
134 |
+
|
135 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
136 |
+
args.model,
|
137 |
+
revision=args.revision,
|
138 |
+
trust_remote_code=True,
|
139 |
+
use_auth_token=True,
|
140 |
+
)
|
141 |
+
|
142 |
+
starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
|
143 |
+
model.cuda()
|
144 |
+
model.eval()
|
145 |
+
|
146 |
+
with open(args.text_file, "r") as f:
|
147 |
+
prompt = f.read()
|
148 |
+
|
149 |
+
prompt = torch.tensor(tokenizer.encode(prompt))[:args.prompt_length].cuda()
|
150 |
+
|
151 |
+
results = {'prefill': [], 'gen': [], 'max_new_tokens': args.max_new_tokens, 'prompt_length': args.prompt_length, 'model': args.model, 'batch_size': args.batch_size}
|
152 |
+
inputs = prompt.repeat(args.batch_size, 1)
|
153 |
+
|
154 |
+
#warmup
|
155 |
+
print('start warmup')
|
156 |
+
for _ in range(10):
|
157 |
+
with torch.no_grad():
|
158 |
+
_ = model.generate(
|
159 |
+
input_ids=inputs,
|
160 |
+
max_new_tokens=1,
|
161 |
+
do_sample=False,
|
162 |
+
)
|
163 |
+
print('finish warmup')
|
164 |
+
torch.cuda.synchronize()
|
165 |
+
|
166 |
+
for prefill_iter in range(args.iterations):
|
167 |
+
starter.record()
|
168 |
+
with torch.no_grad():
|
169 |
+
_ = model.generate(
|
170 |
+
input_ids=inputs,
|
171 |
+
max_new_tokens=1,
|
172 |
+
do_sample=False,
|
173 |
+
)
|
174 |
+
ender.record()
|
175 |
+
torch.cuda.synchronize()
|
176 |
+
t = starter.elapsed_time(ender) / 1000
|
177 |
+
results['prefill'].append(t)
|
178 |
+
print(f'{args.batch_size} prefill iter {prefill_iter} took: {t}')
|
179 |
+
|
180 |
+
|
181 |
+
for gen_iter in range(args.iterations):
|
182 |
+
starter.record()
|
183 |
+
with torch.no_grad():
|
184 |
+
_ = model.generate(
|
185 |
+
input_ids=inputs,
|
186 |
+
max_new_tokens=args.max_new_tokens,
|
187 |
+
do_sample=False,
|
188 |
+
)
|
189 |
+
ender.record()
|
190 |
+
torch.cuda.synchronize()
|
191 |
+
t = starter.elapsed_time(ender) / 1000
|
192 |
+
results['gen'].append(t)
|
193 |
+
|
194 |
+
print(f'{args.batch_size} total generation iter {gen_iter} took: {t}')
|
195 |
+
print(f'{args.batch_size * args.max_new_tokens / t} tokens per seconds')
|
196 |
+
model_str = args.model.split('/')[-1]
|
197 |
+
with open(f'timing_{model_str}_{args.batch_size}.json', 'w') as f:
|
198 |
+
json.dump(results, f)
|
199 |
+
|
200 |
+
|
201 |
+
if __name__ == "__main__":
|
202 |
+
main()
|