tomer-deci
commited on
Commit
·
b943e32
1
Parent(s):
0ae6e17
Upload benchmark_hf_model.py
Browse files- benchmark_hf_model.py +138 -0
benchmark_hf_model.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from argparse import ArgumentParser
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
import torch
|
6 |
+
import transformers
|
7 |
+
from transformers import AutoModelForCausalLM, BatchEncoding
|
8 |
+
|
9 |
+
"""
|
10 |
+
Usage examples (with the best batch sizes on A100-80GB-400W)
|
11 |
+
============================================================
|
12 |
+
python -m benchmark_hf_model --model_name_or_path="Deci/DeciLM-7B" --batch_size=352
|
13 |
+
python -m benchmark_hf_model --model_name_or_path="mistralai/Mistral-7B-v0.1" --batch_size=192 --model_kwargs_json='{"use_flash_attention_2": true}'
|
14 |
+
python -m benchmark_hf_model --model_name_or_path="meta-llama/Llama-2-7b-hf" --batch_size=48 --model_kwargs_json='{"use_flash_attention_2": true}'
|
15 |
+
"""
|
16 |
+
|
17 |
+
|
18 |
+
def parse_args():
|
19 |
+
parser = ArgumentParser()
|
20 |
+
|
21 |
+
parser.add_argument(
|
22 |
+
"--model_name_or_path",
|
23 |
+
type=str,
|
24 |
+
required=True,
|
25 |
+
)
|
26 |
+
parser.add_argument(
|
27 |
+
"--warmup_iters",
|
28 |
+
type=int,
|
29 |
+
default=10,
|
30 |
+
)
|
31 |
+
parser.add_argument(
|
32 |
+
"--iterations",
|
33 |
+
type=int,
|
34 |
+
default=5,
|
35 |
+
)
|
36 |
+
parser.add_argument(
|
37 |
+
"--batch_size",
|
38 |
+
type=int,
|
39 |
+
default=32,
|
40 |
+
)
|
41 |
+
parser.add_argument(
|
42 |
+
"--prompt_length",
|
43 |
+
type=int,
|
44 |
+
default=512,
|
45 |
+
)
|
46 |
+
parser.add_argument(
|
47 |
+
"--max_new_tokens",
|
48 |
+
type=int,
|
49 |
+
default=512,
|
50 |
+
)
|
51 |
+
parser.add_argument(
|
52 |
+
"--precision",
|
53 |
+
type=str,
|
54 |
+
default="bf16",
|
55 |
+
help="Model precision, from: fp32, fp16 or bf16",
|
56 |
+
)
|
57 |
+
parser.add_argument(
|
58 |
+
"--model_kwargs_json",
|
59 |
+
type=str,
|
60 |
+
default=None,
|
61 |
+
)
|
62 |
+
return parser.parse_args()
|
63 |
+
|
64 |
+
|
65 |
+
def main():
|
66 |
+
args = parse_args()
|
67 |
+
transformers.logging.set_verbosity_error()
|
68 |
+
datasets.logging.set_verbosity_error()
|
69 |
+
|
70 |
+
dict_precisions = {
|
71 |
+
"fp32": torch.float32,
|
72 |
+
"fp16": torch.float16,
|
73 |
+
"bf16": torch.bfloat16,
|
74 |
+
}
|
75 |
+
if args.precision not in dict_precisions:
|
76 |
+
raise ValueError(
|
77 |
+
f"Non valid precision {args.precision}, choose from: fp16, fp32, bf16"
|
78 |
+
)
|
79 |
+
dtype = dict_precisions[args.precision]
|
80 |
+
|
81 |
+
model_kwargs = {}
|
82 |
+
if args.model_kwargs_json is not None:
|
83 |
+
model_kwargs = json.loads(args.model_kwargs_json)
|
84 |
+
|
85 |
+
print(f"loading model...")
|
86 |
+
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, trust_remote_code=True,
|
87 |
+
torch_dtype=dtype, **model_kwargs)
|
88 |
+
try:
|
89 |
+
print(model.model.layers[0].self_attn)
|
90 |
+
except:
|
91 |
+
print("couldn't print the model's attention module")
|
92 |
+
|
93 |
+
starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
|
94 |
+
model.cuda()
|
95 |
+
model.eval()
|
96 |
+
|
97 |
+
prompt = torch.ones(args.prompt_length, dtype=torch.long)
|
98 |
+
inputs = BatchEncoding({"input_ids": prompt.repeat(args.batch_size, 1)})
|
99 |
+
inputs = inputs.to(model.device)
|
100 |
+
|
101 |
+
# warmup
|
102 |
+
print(f"warming up for {args.warmup_iters} iterations...")
|
103 |
+
for _ in range(args.warmup_iters):
|
104 |
+
with torch.no_grad():
|
105 |
+
_ = model.generate(
|
106 |
+
**inputs,
|
107 |
+
max_new_tokens=1,
|
108 |
+
do_sample=False,
|
109 |
+
eos_token_id=-1234,
|
110 |
+
)
|
111 |
+
print('finished warmup')
|
112 |
+
torch.cuda.synchronize()
|
113 |
+
|
114 |
+
print(
|
115 |
+
f"prefill ({args.prompt_length} tokens{f' x {args.batch_size} batch' if args.batch_size > 1 else ''}) + generation ({args.max_new_tokens} tokens{f' x {args.batch_size} batch' if args.batch_size > 1 else ''}):")
|
116 |
+
tokens_generated = args.max_new_tokens * args.batch_size
|
117 |
+
prefill_and_generation = []
|
118 |
+
for gen_iter in range(args.iterations):
|
119 |
+
starter.record()
|
120 |
+
with torch.no_grad():
|
121 |
+
_ = model.generate(
|
122 |
+
**inputs,
|
123 |
+
max_new_tokens=args.max_new_tokens,
|
124 |
+
do_sample=False,
|
125 |
+
eos_token_id=-1234,
|
126 |
+
)
|
127 |
+
ender.record()
|
128 |
+
torch.cuda.synchronize()
|
129 |
+
t = starter.elapsed_time(ender) / 1000
|
130 |
+
prefill_and_generation.append(t)
|
131 |
+
print(f" iter {gen_iter + 1}: {t:.03f} sec total, {tokens_generated / t:.02f} generated tokens/sec")
|
132 |
+
aver = sum(prefill_and_generation) / len(prefill_and_generation)
|
133 |
+
print(f" average: {aver:.03f} sec total, {tokens_generated / aver:.02f} generated tokens/sec")
|
134 |
+
print(f"These results are obtained for model '{args.model_name_or_path}' with {args.batch_size=}.")
|
135 |
+
|
136 |
+
|
137 |
+
if __name__ == "__main__":
|
138 |
+
main()
|