Deehan1866 commited on
Commit
3b76d79
1 Parent(s): bc30642

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,601 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: google/electra-large-discriminator
3
+ datasets:
4
+ - PiC/phrase_similarity
5
+ language:
6
+ - en
7
+ library_name: sentence-transformers
8
+ metrics:
9
+ - cosine_accuracy
10
+ - cosine_accuracy_threshold
11
+ - cosine_f1
12
+ - cosine_f1_threshold
13
+ - cosine_precision
14
+ - cosine_recall
15
+ - cosine_ap
16
+ - dot_accuracy
17
+ - dot_accuracy_threshold
18
+ - dot_f1
19
+ - dot_f1_threshold
20
+ - dot_precision
21
+ - dot_recall
22
+ - dot_ap
23
+ - manhattan_accuracy
24
+ - manhattan_accuracy_threshold
25
+ - manhattan_f1
26
+ - manhattan_f1_threshold
27
+ - manhattan_precision
28
+ - manhattan_recall
29
+ - manhattan_ap
30
+ - euclidean_accuracy
31
+ - euclidean_accuracy_threshold
32
+ - euclidean_f1
33
+ - euclidean_f1_threshold
34
+ - euclidean_precision
35
+ - euclidean_recall
36
+ - euclidean_ap
37
+ - max_accuracy
38
+ - max_accuracy_threshold
39
+ - max_f1
40
+ - max_f1_threshold
41
+ - max_precision
42
+ - max_recall
43
+ - max_ap
44
+ pipeline_tag: sentence-similarity
45
+ tags:
46
+ - sentence-transformers
47
+ - sentence-similarity
48
+ - feature-extraction
49
+ - generated_from_trainer
50
+ - dataset_size:7004
51
+ - loss:SoftmaxLoss
52
+ widget:
53
+ - source_sentence: Google SEO expert Matt Cutts had a similar experience, of the eight
54
+ magazines and newspapers Cutts tried to order, he received zero.
55
+ sentences:
56
+ - He dissolved the services of her guards and her court attendants and seized an
57
+ expansive reach of properties belonging to her.
58
+ - Google SEO expert Matt Cutts had a comparable occurrence, of the eight magazines
59
+ and newspapers Cutts tried to order, he received zero.
60
+ - bill's newest solo play, "all over the map", premiered off broadway in april 2016,
61
+ produced by all for an individual cinema.
62
+ - source_sentence: Shula said that Namath "beat our blitz" with his fast release,
63
+ which let him quickly dump the football off to a receiver.
64
+ sentences:
65
+ - Shula said that Namath "beat our blitz" with his quick throw, which let him quickly
66
+ dump the football off to a receiver.
67
+ - it elects a single component of parliament (mp) by the first past the post system
68
+ of election.
69
+ - Matt Groening said that West was one of the most widely known group to ever come
70
+ to the studio.
71
+ - source_sentence: When Angel calls out her name, Cordelia suddenly appears from the
72
+ opposite side of the room saying, "Yep, that chick's in rough shape.
73
+ sentences:
74
+ - The ruined row of text, part of the Florida East Coast Railway, was repaired by
75
+ 2014 renewing freight train access to the port.
76
+ - When Angel calls out her name, Cordelia suddenly appears from the opposite side
77
+ of the room saying, "Yep, that chick's in approximate form.
78
+ - Chaplin's films introduced a moderated kind of comedy than the typical Keystone
79
+ farce, and he developed a large fan base.
80
+ - source_sentence: The following table shows the distances traversed by National Route
81
+ 11 in each different department, showing cities and towns that it passes by (or
82
+ near).
83
+ sentences:
84
+ - The following table shows the distances traversed by National Route 11 in each
85
+ separate city authority, showing cities and towns that it passes by (or near).
86
+ - Similarly, indigenous communities and leaders practice as the main rule of law
87
+ on local native lands and reserves.
88
+ - later, sylvan mixed gary numan's albums "replicas" (with numan's previous band
89
+ tubeway army) and "the quest for instant gratification".
90
+ - source_sentence: She wants to write about Keima but suffers a major case of writer's
91
+ block.
92
+ sentences:
93
+ - In some countries, new extremist parties on the extreme opposite of left of the
94
+ political spectrum arose, motivated through issues of immigration, multiculturalism
95
+ and integration.
96
+ - specific medical status of movement and the general condition of movement both
97
+ are conditions under which contradictions can move.
98
+ - She wants to write about Keima but suffers a huge occurrence of writer's block.
99
+ model-index:
100
+ - name: SentenceTransformer based on google/electra-large-discriminator
101
+ results:
102
+ - task:
103
+ type: binary-classification
104
+ name: Binary Classification
105
+ dataset:
106
+ name: quora duplicates dev
107
+ type: quora-duplicates-dev
108
+ metrics:
109
+ - type: cosine_accuracy
110
+ value: 0.748
111
+ name: Cosine Accuracy
112
+ - type: cosine_accuracy_threshold
113
+ value: 0.9737387895584106
114
+ name: Cosine Accuracy Threshold
115
+ - type: cosine_f1
116
+ value: 0.7604846225535881
117
+ name: Cosine F1
118
+ - type: cosine_f1_threshold
119
+ value: 0.9574624300003052
120
+ name: Cosine F1 Threshold
121
+ - type: cosine_precision
122
+ value: 0.7120418848167539
123
+ name: Cosine Precision
124
+ - type: cosine_recall
125
+ value: 0.816
126
+ name: Cosine Recall
127
+ - type: cosine_ap
128
+ value: 0.786909093121924
129
+ name: Cosine Ap
130
+ - type: dot_accuracy
131
+ value: 0.667
132
+ name: Dot Accuracy
133
+ - type: dot_accuracy_threshold
134
+ value: 275.4551696777344
135
+ name: Dot Accuracy Threshold
136
+ - type: dot_f1
137
+ value: 0.733229329173167
138
+ name: Dot F1
139
+ - type: dot_f1_threshold
140
+ value: 266.14727783203125
141
+ name: Dot F1 Threshold
142
+ - type: dot_precision
143
+ value: 0.6010230179028133
144
+ name: Dot Precision
145
+ - type: dot_recall
146
+ value: 0.94
147
+ name: Dot Recall
148
+ - type: dot_ap
149
+ value: 0.5935392159238977
150
+ name: Dot Ap
151
+ - type: manhattan_accuracy
152
+ value: 0.746
153
+ name: Manhattan Accuracy
154
+ - type: manhattan_accuracy_threshold
155
+ value: 87.73857116699219
156
+ name: Manhattan Accuracy Threshold
157
+ - type: manhattan_f1
158
+ value: 0.7614678899082568
159
+ name: Manhattan F1
160
+ - type: manhattan_f1_threshold
161
+ value: 131.43374633789062
162
+ name: Manhattan F1 Threshold
163
+ - type: manhattan_precision
164
+ value: 0.7033898305084746
165
+ name: Manhattan Precision
166
+ - type: manhattan_recall
167
+ value: 0.83
168
+ name: Manhattan Recall
169
+ - type: manhattan_ap
170
+ value: 0.7904964653279406
171
+ name: Manhattan Ap
172
+ - type: euclidean_accuracy
173
+ value: 0.747
174
+ name: Euclidean Accuracy
175
+ - type: euclidean_accuracy_threshold
176
+ value: 4.5833892822265625
177
+ name: Euclidean Accuracy Threshold
178
+ - type: euclidean_f1
179
+ value: 0.7610121836925962
180
+ name: Euclidean F1
181
+ - type: euclidean_f1_threshold
182
+ value: 5.5540361404418945
183
+ name: Euclidean F1 Threshold
184
+ - type: euclidean_precision
185
+ value: 0.7160493827160493
186
+ name: Euclidean Precision
187
+ - type: euclidean_recall
188
+ value: 0.812
189
+ name: Euclidean Recall
190
+ - type: euclidean_ap
191
+ value: 0.789806008641207
192
+ name: Euclidean Ap
193
+ - type: max_accuracy
194
+ value: 0.748
195
+ name: Max Accuracy
196
+ - type: max_accuracy_threshold
197
+ value: 275.4551696777344
198
+ name: Max Accuracy Threshold
199
+ - type: max_f1
200
+ value: 0.7614678899082568
201
+ name: Max F1
202
+ - type: max_f1_threshold
203
+ value: 266.14727783203125
204
+ name: Max F1 Threshold
205
+ - type: max_precision
206
+ value: 0.7160493827160493
207
+ name: Max Precision
208
+ - type: max_recall
209
+ value: 0.94
210
+ name: Max Recall
211
+ - type: max_ap
212
+ value: 0.7904964653279406
213
+ name: Max Ap
214
+ ---
215
+
216
+ # SentenceTransformer based on google/electra-large-discriminator
217
+
218
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google/electra-large-discriminator](https://huggingface.co/google/electra-large-discriminator) on the [PiC/phrase_similarity](https://huggingface.co/datasets/PiC/phrase_similarity) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
219
+
220
+ ## Model Details
221
+
222
+ ### Model Description
223
+ - **Model Type:** Sentence Transformer
224
+ - **Base model:** [google/electra-large-discriminator](https://huggingface.co/google/electra-large-discriminator) <!-- at revision c13c3df7efadc2162f42588bd28eb4e187d602a5 -->
225
+ - **Maximum Sequence Length:** 512 tokens
226
+ - **Output Dimensionality:** 1024 tokens
227
+ - **Similarity Function:** Cosine Similarity
228
+ - **Training Dataset:**
229
+ - [PiC/phrase_similarity](https://huggingface.co/datasets/PiC/phrase_similarity)
230
+ - **Language:** en
231
+ <!-- - **License:** Unknown -->
232
+
233
+ ### Model Sources
234
+
235
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
236
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
237
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
238
+
239
+ ### Full Model Architecture
240
+
241
+ ```
242
+ SentenceTransformer(
243
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ElectraModel
244
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
245
+ )
246
+ ```
247
+
248
+ ## Usage
249
+
250
+ ### Direct Usage (Sentence Transformers)
251
+
252
+ First install the Sentence Transformers library:
253
+
254
+ ```bash
255
+ pip install -U sentence-transformers
256
+ ```
257
+
258
+ Then you can load this model and run inference.
259
+ ```python
260
+ from sentence_transformers import SentenceTransformer
261
+
262
+ # Download from the 🤗 Hub
263
+ model = SentenceTransformer("Deehan1866/Electra")
264
+ # Run inference
265
+ sentences = [
266
+ "She wants to write about Keima but suffers a major case of writer's block.",
267
+ "She wants to write about Keima but suffers a huge occurrence of writer's block.",
268
+ 'specific medical status of movement and the general condition of movement both are conditions under which contradictions can move.',
269
+ ]
270
+ embeddings = model.encode(sentences)
271
+ print(embeddings.shape)
272
+ # [3, 1024]
273
+
274
+ # Get the similarity scores for the embeddings
275
+ similarities = model.similarity(embeddings, embeddings)
276
+ print(similarities.shape)
277
+ # [3, 3]
278
+ ```
279
+
280
+ <!--
281
+ ### Direct Usage (Transformers)
282
+
283
+ <details><summary>Click to see the direct usage in Transformers</summary>
284
+
285
+ </details>
286
+ -->
287
+
288
+ <!--
289
+ ### Downstream Usage (Sentence Transformers)
290
+
291
+ You can finetune this model on your own dataset.
292
+
293
+ <details><summary>Click to expand</summary>
294
+
295
+ </details>
296
+ -->
297
+
298
+ <!--
299
+ ### Out-of-Scope Use
300
+
301
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
302
+ -->
303
+
304
+ ## Evaluation
305
+
306
+ ### Metrics
307
+
308
+ #### Binary Classification
309
+ * Dataset: `quora-duplicates-dev`
310
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
311
+
312
+ | Metric | Value |
313
+ |:-----------------------------|:-----------|
314
+ | cosine_accuracy | 0.748 |
315
+ | cosine_accuracy_threshold | 0.9737 |
316
+ | cosine_f1 | 0.7605 |
317
+ | cosine_f1_threshold | 0.9575 |
318
+ | cosine_precision | 0.712 |
319
+ | cosine_recall | 0.816 |
320
+ | cosine_ap | 0.7869 |
321
+ | dot_accuracy | 0.667 |
322
+ | dot_accuracy_threshold | 275.4552 |
323
+ | dot_f1 | 0.7332 |
324
+ | dot_f1_threshold | 266.1473 |
325
+ | dot_precision | 0.601 |
326
+ | dot_recall | 0.94 |
327
+ | dot_ap | 0.5935 |
328
+ | manhattan_accuracy | 0.746 |
329
+ | manhattan_accuracy_threshold | 87.7386 |
330
+ | manhattan_f1 | 0.7615 |
331
+ | manhattan_f1_threshold | 131.4337 |
332
+ | manhattan_precision | 0.7034 |
333
+ | manhattan_recall | 0.83 |
334
+ | manhattan_ap | 0.7905 |
335
+ | euclidean_accuracy | 0.747 |
336
+ | euclidean_accuracy_threshold | 4.5834 |
337
+ | euclidean_f1 | 0.761 |
338
+ | euclidean_f1_threshold | 5.554 |
339
+ | euclidean_precision | 0.716 |
340
+ | euclidean_recall | 0.812 |
341
+ | euclidean_ap | 0.7898 |
342
+ | max_accuracy | 0.748 |
343
+ | max_accuracy_threshold | 275.4552 |
344
+ | max_f1 | 0.7615 |
345
+ | max_f1_threshold | 266.1473 |
346
+ | max_precision | 0.716 |
347
+ | max_recall | 0.94 |
348
+ | **max_ap** | **0.7905** |
349
+
350
+ <!--
351
+ ## Bias, Risks and Limitations
352
+
353
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
354
+ -->
355
+
356
+ <!--
357
+ ### Recommendations
358
+
359
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
360
+ -->
361
+
362
+ ## Training Details
363
+
364
+ ### Training Dataset
365
+
366
+ #### PiC/phrase_similarity
367
+
368
+ * Dataset: [PiC/phrase_similarity](https://huggingface.co/datasets/PiC/phrase_similarity) at [fc67ce7](https://huggingface.co/datasets/PiC/phrase_similarity/tree/fc67ce7c1e69e360e42dc6f31ddf97bb32f1923d)
369
+ * Size: 7,004 training samples
370
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
371
+ * Approximate statistics based on the first 1000 samples:
372
+ | | sentence1 | sentence2 | label |
373
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
374
+ | type | string | string | int |
375
+ | details | <ul><li>min: 12 tokens</li><li>mean: 26.35 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 26.89 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>0: ~48.80%</li><li>1: ~51.20%</li></ul> |
376
+ * Samples:
377
+ | sentence1 | sentence2 | label |
378
+ |:------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
379
+ | <code>newly formed camp is released from the membrane and diffuses across the intracellular space where it serves to activate pka.</code> | <code>recently made encampment is released from the membrane and diffuses across the intracellular space where it serves to activate pka.</code> | <code>0</code> |
380
+ | <code>According to one data, in 1910, on others – in 1915, the mansion became Natalya Dmitriyevna Shchuchkina's property.</code> | <code>According to a particular statistic, in 1910, on others – in 1915, the mansion became Natalya Dmitriyevna Shchuchkina's property.</code> | <code>1</code> |
381
+ | <code>Note that Fact 1 does not assume any particular structure on the set formula_65.</code> | <code>Note that Fact 1 does not assume any specific edifice on the set formula_65.</code> | <code>0</code> |
382
+ * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
383
+
384
+ ### Evaluation Dataset
385
+
386
+ #### PiC/phrase_similarity
387
+
388
+ * Dataset: [PiC/phrase_similarity](https://huggingface.co/datasets/PiC/phrase_similarity) at [fc67ce7](https://huggingface.co/datasets/PiC/phrase_similarity/tree/fc67ce7c1e69e360e42dc6f31ddf97bb32f1923d)
389
+ * Size: 1,000 evaluation samples
390
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
391
+ * Approximate statistics based on the first 1000 samples:
392
+ | | sentence1 | sentence2 | label |
393
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
394
+ | type | string | string | int |
395
+ | details | <ul><li>min: 9 tokens</li><li>mean: 26.21 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 26.8 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>0: ~50.00%</li><li>1: ~50.00%</li></ul> |
396
+ * Samples:
397
+ | sentence1 | sentence2 | label |
398
+ |:----------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------|:---------------|
399
+ | <code>after theo's apparent death, she decides to leave first colony and ends up traveling with the apostles.</code> | <code>after theo's apparent death, she decides to leave original settlement and ends up traveling with the apostles.</code> | <code>0</code> |
400
+ | <code>The guard assigned to Vivian leaves her to prevent the robbery, allowing her to connect to the bank's network.</code> | <code>The guard assigned to Vivian leaves her to prevent the robbery, allowing her to connect to the bank's locations.</code> | <code>0</code> |
401
+ | <code>Two days later Louis XVI banished Necker by a "lettre de cachet" for his very public exchange of pamphlets.</code> | <code>Two days later Louis XVI banished Necker by a "lettre de cachet" for his very free forum of pamphlets.</code> | <code>0</code> |
402
+ * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
403
+
404
+ ### Training Hyperparameters
405
+ #### Non-Default Hyperparameters
406
+
407
+ - `eval_strategy`: steps
408
+ - `per_device_train_batch_size`: 16
409
+ - `per_device_eval_batch_size`: 16
410
+ - `learning_rate`: 2e-05
411
+ - `num_train_epochs`: 5
412
+ - `warmup_ratio`: 0.1
413
+ - `load_best_model_at_end`: True
414
+
415
+ #### All Hyperparameters
416
+ <details><summary>Click to expand</summary>
417
+
418
+ - `overwrite_output_dir`: False
419
+ - `do_predict`: False
420
+ - `eval_strategy`: steps
421
+ - `prediction_loss_only`: True
422
+ - `per_device_train_batch_size`: 16
423
+ - `per_device_eval_batch_size`: 16
424
+ - `per_gpu_train_batch_size`: None
425
+ - `per_gpu_eval_batch_size`: None
426
+ - `gradient_accumulation_steps`: 1
427
+ - `eval_accumulation_steps`: None
428
+ - `learning_rate`: 2e-05
429
+ - `weight_decay`: 0.0
430
+ - `adam_beta1`: 0.9
431
+ - `adam_beta2`: 0.999
432
+ - `adam_epsilon`: 1e-08
433
+ - `max_grad_norm`: 1.0
434
+ - `num_train_epochs`: 5
435
+ - `max_steps`: -1
436
+ - `lr_scheduler_type`: linear
437
+ - `lr_scheduler_kwargs`: {}
438
+ - `warmup_ratio`: 0.1
439
+ - `warmup_steps`: 0
440
+ - `log_level`: passive
441
+ - `log_level_replica`: warning
442
+ - `log_on_each_node`: True
443
+ - `logging_nan_inf_filter`: True
444
+ - `save_safetensors`: True
445
+ - `save_on_each_node`: False
446
+ - `save_only_model`: False
447
+ - `restore_callback_states_from_checkpoint`: False
448
+ - `no_cuda`: False
449
+ - `use_cpu`: False
450
+ - `use_mps_device`: False
451
+ - `seed`: 42
452
+ - `data_seed`: None
453
+ - `jit_mode_eval`: False
454
+ - `use_ipex`: False
455
+ - `bf16`: False
456
+ - `fp16`: False
457
+ - `fp16_opt_level`: O1
458
+ - `half_precision_backend`: auto
459
+ - `bf16_full_eval`: False
460
+ - `fp16_full_eval`: False
461
+ - `tf32`: None
462
+ - `local_rank`: 0
463
+ - `ddp_backend`: None
464
+ - `tpu_num_cores`: None
465
+ - `tpu_metrics_debug`: False
466
+ - `debug`: []
467
+ - `dataloader_drop_last`: False
468
+ - `dataloader_num_workers`: 0
469
+ - `dataloader_prefetch_factor`: None
470
+ - `past_index`: -1
471
+ - `disable_tqdm`: False
472
+ - `remove_unused_columns`: True
473
+ - `label_names`: None
474
+ - `load_best_model_at_end`: True
475
+ - `ignore_data_skip`: False
476
+ - `fsdp`: []
477
+ - `fsdp_min_num_params`: 0
478
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
479
+ - `fsdp_transformer_layer_cls_to_wrap`: None
480
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
481
+ - `deepspeed`: None
482
+ - `label_smoothing_factor`: 0.0
483
+ - `optim`: adamw_torch
484
+ - `optim_args`: None
485
+ - `adafactor`: False
486
+ - `group_by_length`: False
487
+ - `length_column_name`: length
488
+ - `ddp_find_unused_parameters`: None
489
+ - `ddp_bucket_cap_mb`: None
490
+ - `ddp_broadcast_buffers`: False
491
+ - `dataloader_pin_memory`: True
492
+ - `dataloader_persistent_workers`: False
493
+ - `skip_memory_metrics`: True
494
+ - `use_legacy_prediction_loop`: False
495
+ - `push_to_hub`: False
496
+ - `resume_from_checkpoint`: None
497
+ - `hub_model_id`: None
498
+ - `hub_strategy`: every_save
499
+ - `hub_private_repo`: False
500
+ - `hub_always_push`: False
501
+ - `gradient_checkpointing`: False
502
+ - `gradient_checkpointing_kwargs`: None
503
+ - `include_inputs_for_metrics`: False
504
+ - `eval_do_concat_batches`: True
505
+ - `fp16_backend`: auto
506
+ - `push_to_hub_model_id`: None
507
+ - `push_to_hub_organization`: None
508
+ - `mp_parameters`:
509
+ - `auto_find_batch_size`: False
510
+ - `full_determinism`: False
511
+ - `torchdynamo`: None
512
+ - `ray_scope`: last
513
+ - `ddp_timeout`: 1800
514
+ - `torch_compile`: False
515
+ - `torch_compile_backend`: None
516
+ - `torch_compile_mode`: None
517
+ - `dispatch_batches`: None
518
+ - `split_batches`: None
519
+ - `include_tokens_per_second`: False
520
+ - `include_num_input_tokens_seen`: False
521
+ - `neftune_noise_alpha`: None
522
+ - `optim_target_modules`: None
523
+ - `batch_eval_metrics`: False
524
+ - `eval_on_start`: False
525
+ - `batch_sampler`: batch_sampler
526
+ - `multi_dataset_batch_sampler`: proportional
527
+
528
+ </details>
529
+
530
+ ### Training Logs
531
+ | Epoch | Step | Training Loss | loss | quora-duplicates-dev_max_ap |
532
+ |:----------:|:-------:|:-------------:|:----------:|:---------------------------:|
533
+ | 0 | 0 | - | - | 0.6721 |
534
+ | 0.2283 | 100 | - | 0.6805 | 0.6847 |
535
+ | **0.4566** | **200** | **-** | **0.5313** | **0.7905** |
536
+ | 0.6849 | 300 | - | 0.5383 | 0.7838 |
537
+ | 0.9132 | 400 | - | 0.6442 | 0.7585 |
538
+ | 1.1416 | 500 | 0.5761 | 0.5742 | 0.7843 |
539
+ | 1.3699 | 600 | - | 0.5606 | 0.7558 |
540
+ | 1.5982 | 700 | - | 0.5716 | 0.7772 |
541
+ | 1.8265 | 800 | - | 0.5573 | 0.7619 |
542
+ | 2.0548 | 900 | - | 0.6951 | 0.7760 |
543
+ | 2.2831 | 1000 | 0.3712 | 0.7678 | 0.7753 |
544
+ | 2.5114 | 1100 | - | 0.7712 | 0.7915 |
545
+ | 2.7397 | 1200 | - | 0.8120 | 0.7914 |
546
+ | 2.9680 | 1300 | - | 0.8045 | 0.7789 |
547
+ | 3.1963 | 1400 | - | 0.9936 | 0.7821 |
548
+ | 3.4247 | 1500 | 0.1942 | 1.0883 | 0.7679 |
549
+ | 3.6530 | 1600 | - | 0.9814 | 0.7566 |
550
+ | 3.8813 | 1700 | - | 1.0897 | 0.7830 |
551
+ | 4.1096 | 1800 | - | 1.0764 | 0.7729 |
552
+ | 4.3379 | 1900 | - | 1.1209 | 0.7802 |
553
+ | 4.5662 | 2000 | 0.1175 | 1.1522 | 0.7804 |
554
+ | 4.7945 | 2100 | - | 1.1545 | 0.7807 |
555
+ | 5.0 | 2190 | - | - | 0.7905 |
556
+
557
+ * The bold row denotes the saved checkpoint.
558
+
559
+ ### Framework Versions
560
+ - Python: 3.10.10
561
+ - Sentence Transformers: 3.0.1
562
+ - Transformers: 4.42.3
563
+ - PyTorch: 2.2.1+cu121
564
+ - Accelerate: 0.32.1
565
+ - Datasets: 2.20.0
566
+ - Tokenizers: 0.19.1
567
+
568
+ ## Citation
569
+
570
+ ### BibTeX
571
+
572
+ #### Sentence Transformers and SoftmaxLoss
573
+ ```bibtex
574
+ @inproceedings{reimers-2019-sentence-bert,
575
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
576
+ author = "Reimers, Nils and Gurevych, Iryna",
577
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
578
+ month = "11",
579
+ year = "2019",
580
+ publisher = "Association for Computational Linguistics",
581
+ url = "https://arxiv.org/abs/1908.10084",
582
+ }
583
+ ```
584
+
585
+ <!--
586
+ ## Glossary
587
+
588
+ *Clearly define terms in order to be accessible across audiences.*
589
+ -->
590
+
591
+ <!--
592
+ ## Model Card Authors
593
+
594
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
595
+ -->
596
+
597
+ <!--
598
+ ## Model Card Contact
599
+
600
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
601
+ -->
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google/electra-large-discriminator",
3
+ "architectures": [
4
+ "ElectraModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "embedding_size": 1024,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4096,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "electra",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 24,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "summary_activation": "gelu",
22
+ "summary_last_dropout": 0.1,
23
+ "summary_type": "first",
24
+ "summary_use_proj": true,
25
+ "torch_dtype": "float32",
26
+ "transformers_version": "4.42.3",
27
+ "type_vocab_size": 2,
28
+ "use_cache": true,
29
+ "vocab_size": 30522
30
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.3",
5
+ "pytorch": "2.2.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:170ef32b7e718a9992f87bf9957c7fb14b15e6fe2bb743094a0ac8fa746ff9ad
3
+ size 1336413848
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "ElectraTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff