DeepMount00 commited on
Commit
b48d6e9
1 Parent(s): 35d7c13

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -4
README.md CHANGED
@@ -1,12 +1,22 @@
1
  ---
2
- language:
3
- - it
4
  license: apache-2.0
5
  datasets:
6
  - DeepMount00/gquad_it
 
 
7
  pipeline_tag: question-answering
8
  ---
9
 
 
 
 
 
 
 
 
 
 
 
10
 
11
  ## How to Use
12
  How to use mamba q&a
@@ -28,11 +38,11 @@ def predict(contesto, domanda):
28
 
29
  input_ids = tokenizer([prompt], return_tensors="pt").to(device)
30
 
31
- generate_ids = model.generate(**input_ids, max_new_tokens=150, eos_token_id=0)
32
 
33
  answer = tokenizer.batch_decode(generate_ids)
34
  try:
35
- final_answer = answer[0].split("##RISPOSTA: ")[1].split('\n', 1)[0]
36
  except IndexError:
37
  final_answer = ""
38
  return final_answer
 
1
  ---
 
 
2
  license: apache-2.0
3
  datasets:
4
  - DeepMount00/gquad_it
5
+ language:
6
+ - it
7
  pipeline_tag: question-answering
8
  ---
9
 
10
+ ## SQuAD-it Evaluation
11
+
12
+ The Stanford Question Answering Dataset (SQuAD) in Italian (SQuAD-it) is used to evaluate the model's reading comprehension and question-answering capabilities. The following table presents the F1 score and Exact Match (EM) metrics, including the percentage improvements:
13
+
14
+ | Model | F1 Score | Exact Match (EM) |
15
+ |----------------------------------------------|----------|------------------|
16
+ | **DeepMount00/Gemma_QA_ITA_v3** | **77.24%** | **64.60%** |
17
+ | **DeepMount00/Gemma_QA_ITA_v2** | **77.17%** | **63.82%** |
18
+ | **DeepMount00/mamba_790_hf_qa** | **69.72%** | **58.56%** |
19
+ | **DeepMount00/Gemma_QA_ITA** | **59.59%** | **40.68%** |
20
 
21
  ## How to Use
22
  How to use mamba q&a
 
38
 
39
  input_ids = tokenizer([prompt], return_tensors="pt").to(device)
40
 
41
+ generate_ids = model.generate(**input_ids, max_new_tokens=150, eos_token_id=8112)
42
 
43
  answer = tokenizer.batch_decode(generate_ids)
44
  try:
45
+ final_answer = answer[0].split("##RISPOSTA: ")[1].split("##END")[0].strip("\n")
46
  except IndexError:
47
  final_answer = ""
48
  return final_answer