Yura Kuratov commited on
Commit
b81d591
·
1 Parent(s): d34c9b6

add tiny-5k model

Browse files
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - ru
4
+ ---
5
+ # distilrubert-tiny-cased-conversational-5k
6
+ Conversational DistilRuBERT-tiny-5k \(Russian, cased, 3‑layers, 264‑hidden, 12‑heads, 3.6M parameters, 5k vocab\) was trained on OpenSubtitles\[1\], [Dirty](https://d3.ru/), [Pikabu](https://pikabu.ru/), and a Social Media segment of Taiga corpus\[2\] (as [Conversational RuBERT](https://huggingface.co/DeepPavlov/rubert-base-cased-conversational)).
7
+
8
+ Our DistilRuBERT-tiny-5k is highly inspired by \[3\], \[4\] and architecture is very close to \[5\]. Namely, we use
9
+ * MLM loss (between token labels and student output distribution)
10
+ * KL loss (between averaged student and teacher hidden states)
11
+
12
+ The key feature is:
13
+ * reduced vocabulary size (5K vs 30K in *tiny* vs. 100K in *base* and *small*)
14
+
15
+ Here is comparison between teacher model (`Conversational RuBERT`) and other distilled models.
16
+
17
+ | Model name | \# params, M | \# vocab, K | Mem., MB |
18
+ |---|---|---|---|
19
+ | `rubert-base-cased-conversational` | 177.9 | 120 | 679 |
20
+ | `distilrubert-base-cased-conversational` | 135.5 | 120 | 517 |
21
+ | `distilrubert-small-cased-conversational` | 107.1 | 120 | 409 |
22
+ | `cointegrated/rubert-tiny` | 11.8 | 30 | 46 |
23
+ | `cointegrated/rubert-tiny2` | 29.3 | 84 | 112 |
24
+ | `distilrubert-tiny-cased-conversational-v1` | 10.4 | 31 | 41 |
25
+ | `distilrubert-tiny-cased-conversational-5k` | **3.6** | 5 | **14** |
26
+
27
+
28
+ DistilRuBERT-tiny was trained for about 100 hrs. on 7 nVIDIA Tesla P100-SXM2.0 16Gb.
29
+
30
+ We used `PyTorchBenchmark` from `transformers` to evaluate model's performance and compare it with other pre-trained language models for Russian. All tests were performed on NVIDIA GeForce GTX 1080 Ti and Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz
31
+
32
+ | Model name | Batch size | Seq len | Time, s || Mem, MB ||
33
+ |---|---|---|------||------||
34
+ | | | | CPU | GPU | CPU | GPU |
35
+ | `rubert-base-cased-conversational` | 16 | 512 | 5.283 | 0.1866 | 1550 | 1938 |
36
+ | `distilrubert-base-cased-conversational` | 16 | 512 | 2.335 | 0.0553 | 2177 | 2794 |
37
+ | `distilrubert-small-cased-conversational` | 16 | 512 | 0.802 | **0.0015** | 1541 | 1810 |
38
+ | `cointegrated/rubert-tiny` | 16 | 512 | 0.942 | 0.0022 | 1308 | 2088 |
39
+ | `cointegrated/rubert-tiny2` | 16 | 512 | 1.786 | 0.0023 | 3054 | 3848 |
40
+ | `distilrubert-tiny-cased-conversational-v1` | 16 | 512 | **0.374** | **0.002** | **714** | **1158** |
41
+ | `distilrubert-tiny-cased-conversational-5k` | 16 | 512 | **0.354** | **0.0018** | **664** | **1126** |
42
+
43
+
44
+ To evaluate model quality, we fine-tuned DistilRuBERT-tiny-5k on classification (RuSentiment, ParaPhraser), NER and question answering data sets for Russian. The results could be found in the [paper](https://arxiv.org/abs/2205.02340) Table 4 as well as performance benchmarks and training details.
45
+
46
+ # Citation
47
+ If you found the model useful for your research, we are kindly ask to cite [this](https://arxiv.org/abs/2205.02340) paper:
48
+ ```
49
+ @misc{https://doi.org/10.48550/arxiv.2205.02340,
50
+ doi = {10.48550/ARXIV.2205.02340},
51
+ url = {https://arxiv.org/abs/2205.02340},
52
+ author = {Kolesnikova, Alina and Kuratov, Yuri and Konovalov, Vasily and Burtsev, Mikhail},
53
+ keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences},
54
+ title = {Knowledge Distillation of Russian Language Models with Reduction of Vocabulary},
55
+ publisher = {arXiv},
56
+ year = {2022},
57
+ copyright = {arXiv.org perpetual, non-exclusive license}
58
+ }
59
+ ```
60
+
61
+ \[1\]: P. Lison and J. Tiedemann, 2016, OpenSubtitles2016: Extracting Large Parallel Corpora from Movie and TV Subtitles. In Proceedings of the 10th International Conference on Language Resources and Evaluation \(LREC 2016\)
62
+
63
+ \[2\]: Shavrina T., Shapovalova O. \(2017\) TO THE METHODOLOGY OF CORPUS CONSTRUCTION FOR MACHINE LEARNING: «TAIGA» SYNTAX TREE CORPUS AND PARSER. in proc. of “CORPORA2017”, international conference , Saint-Petersbourg, 2017.
64
+
65
+ \[3\]: Sanh, V., Debut, L., Chaumond, J., & Wolf, T. \(2019\). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.
66
+
67
+ \[4\]: <https://github.com/huggingface/transformers/tree/master/examples/research_projects/distillation>
68
+
69
+ \[5\]: <https://habr.com/ru/post/562064/>, <https://huggingface.co/cointegrated/rubert-tiny>
config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "vocab_size": 5031,
3
+ "max_position_embeddings": 512,
4
+ "n_layers": 3,
5
+ "n_heads": 12,
6
+ "dim": 264,
7
+ "hidden_dim": 792,
8
+ "model_type": "distilbert"
9
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdcbcb6366c72c390890f20d2b0b0434cb731cbe76941ec856255eddaef77df5
3
+ size 14581616
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": false, "do_basic_tokenize": true, "never_split": null, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null}
vocab.txt ADDED
Binary file (48.6 kB). View file