DeividasM commited on
Commit
de9d076
1 Parent(s): 41dfc5f
Files changed (1) hide show
  1. README.md +181 -0
README.md ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+
3
+ language: lt
4
+
5
+ datasets:
6
+
7
+ - common_voice
8
+
9
+ tags:
10
+
11
+ - audio
12
+
13
+ - automatic-speech-recognition
14
+
15
+ - speech
16
+
17
+ - xlsr-fine-tuning-week
18
+
19
+ license: apache-2.0
20
+
21
+ model-index:
22
+
23
+ - name: XLSR Wav2Vec2 Lithuanina by Deividas Mataciunas
24
+
25
+ results:
26
+
27
+ - task:
28
+
29
+ name: Speech Recognition
30
+
31
+ type: automatic-speech-recognition
32
+
33
+ dataset:
34
+
35
+ name: Common Voice lt
36
+
37
+ type: common_voice
38
+
39
+ args: {lang_id}
40
+
41
+ metrics:
42
+
43
+ - name: Test WER
44
+
45
+ type: wer
46
+
47
+ value: 56.55
48
+
49
+ ---
50
+
51
+ # Wav2Vec2-Large-XLSR-53-Lithuanian
52
+
53
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Lithuanian using the [Common Voice](https://huggingface.co/datasets/common_voice)
54
+
55
+ When using this model, make sure that your speech input is sampled at 16kHz.
56
+
57
+ ## Usage
58
+
59
+ The model can be used directly (without a language model) as follows:
60
+
61
+ ```python
62
+
63
+ import torch
64
+
65
+ import torchaudio
66
+
67
+ from datasets import load_dataset
68
+
69
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
70
+
71
+ test_dataset = load_dataset("common_voice", "lt", split="test[:2%]").
72
+
73
+ processor = Wav2Vec2Processor.from_pretrained("DeividasM/wav2vec2-large-xlsr-53-lithuanian")
74
+
75
+ model = Wav2Vec2ForCTC.from_pretrained("DeividasM/wav2vec2-large-xlsr-53-lithuanian")
76
+
77
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
78
+
79
+ # Preprocessing the datasets.
80
+
81
+ # We need to read the audio files as arrays
82
+
83
+ def speech_file_to_array_fn(batch):
84
+
85
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
86
+
87
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
88
+
89
+ return batch
90
+
91
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
92
+
93
+ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
94
+
95
+ with torch.no_grad():
96
+
97
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
98
+
99
+ predicted_ids = torch.argmax(logits, dim=-1)
100
+
101
+ print("Prediction:", processor.batch_decode(predicted_ids))
102
+
103
+ print("Reference:", test_dataset["sentence"][:2])
104
+
105
+ ```
106
+
107
+ ## Evaluation
108
+
109
+ The model can be evaluated as follows on the Lithuanian test data of Common Voice.
110
+
111
+ ```python
112
+
113
+ import torch
114
+
115
+ import torchaudio
116
+
117
+ from datasets import load_dataset, load_metric
118
+
119
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
120
+
121
+ import re
122
+
123
+ test_dataset = load_dataset("common_voice", "lt", split="test")
124
+
125
+ wer = load_metric("wer")
126
+
127
+ processor = Wav2Vec2Processor.from_pretrained("DeividasM/wav2vec2-large-xlsr-53-lithuanian")
128
+
129
+ model = Wav2Vec2ForCTC.from_pretrained("DeividasM/wav2vec2-large-xlsr-53-lithuanian")
130
+
131
+ model.to("cuda")
132
+
133
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
134
+
135
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
136
+
137
+ # Preprocessing the datasets.
138
+
139
+ # We need to read the audio files as arrays
140
+
141
+ def speech_file_to_array_fn(batch):
142
+
143
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
144
+
145
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
146
+
147
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
148
+
149
+ return batch
150
+
151
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
152
+
153
+ # Preprocessing the datasets.
154
+
155
+ # We need to read the audio files as arrays
156
+
157
+ def evaluate(batch):
158
+
159
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
160
+
161
+ with torch.no_grad():
162
+
163
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
164
+
165
+ pred_ids = torch.argmax(logits, dim=-1)
166
+
167
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
168
+
169
+ return batch
170
+
171
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
172
+
173
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
174
+
175
+ ```
176
+
177
+ **Test Result**: 56.55 %
178
+
179
+ ## Training
180
+
181
+ The Common Voice `train`, `validation` datasets were used for training.