|
--- |
|
license: mit |
|
language: |
|
- ru |
|
pipeline_tag: text2text-generation |
|
widget: |
|
- text: '<SC6>Человек: Ответь на вопрос. Почему трава зеленая?\nБот: <extra_id_0>' |
|
--- |
|
# Den4ikAI/FRED-T5-XL_instructor |
|
Инструкционная модель на FRED-T5-XL. |
|
|
|
# Пример использования |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
import torch |
|
use_cuda = torch.cuda.is_available() |
|
device = torch.device("cuda" if use_cuda else "cpu") |
|
tokenizer = AutoTokenizer.from_pretrained("Den4ikAI/FRED-T5-XL_instructor") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("Den4ikAI/FRED-T5-XL_instructor", torch_dtype=torch.float16).to(device) |
|
model.eval() |
|
|
|
from transformers import GenerationConfig |
|
|
|
generation_config = GenerationConfig.from_pretrained("Den4ikAI/FRED-T5-XL_instructor") |
|
def generate(prompt): |
|
data = tokenizer(f"<SC6>Человек: {prompt}\nБот: <extra_id_0>", return_tensors="pt").to(model.device) |
|
output_ids = model.generate( |
|
**data, |
|
generation_config=generation_config |
|
)[0] |
|
out = tokenizer.decode(output_ids.tolist()) |
|
return out |
|
|
|
while 1: |
|
print(generate(input(":> "))) |
|
|
|
``` |
|
# Citation |
|
``` |
|
@MISC{Den4ikAI/FRED-T5-XL_instructor, |
|
author = {Denis Petrov}, |
|
title = {Russian Instructor Model}, |
|
url = {https://huggingface.co/Den4ikAI/FRED-T5-XL_instructor/}, |
|
year = 2023 |
|
} |
|
``` |