File size: 14,386 Bytes
1c55a6d
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eff522478c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff52247950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff522479e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff52247a70>", "_build": "<function ActorCriticPolicy._build at 0x7eff52247b00>", "forward": "<function ActorCriticPolicy.forward at 0x7eff52247b90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff52247c20>", "_predict": "<function ActorCriticPolicy._predict at 0x7eff52247cb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff52247d40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff52247dd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff52247e60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7eff52284e10>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652896606.8595378, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOGkLwpVDi6iwnZOlzKUzbrhRQ7zQ/+uQAAgD8AAIA/M0Nuu+G8l7ryjCo7bBCONkl5kbgSn201AACAPwAAgD8AQMw6jyZHusO0g7wm80g1uU0ROHEHqrQAAIA/AACAP5ofzDzXLB+7uzCyvNagkjx+4VW8M7Z8PQAAgD8AAIA/jn7bvuxEkL3jBfc6O/mPOVitXj60YhG6AACAPwAAgD+6FkU+1zJnu/gtczsi9qa367KavP78RLoAAIA/AACAP4DqGL64yoG7C6fsucqeCrc2v+08xvILOQAAgD8AAIA/APwpPYZNlT875vc90G6gvj5At7wDYho6AAAAAAAAAACzO6+9r2FxP3ZR2L3hGJa+L/7bve5AXr0AAAAAAAAAAK3mOz5l15w/ODswPz5Hcb6/fGM9+2ViPgAAAAAAAAAAOrA2PqwL2jyUtZ6810hRu0dKdT4icmu8AACAPwAAgD96XXs+9fnGPqpLTr4i+mi+O2wWvaO5Yj0AAAAAAAAAAIC/uD1SYIa5G9Vcu3ISDTf9c8s7pZuEtgAAgD8AAIA/zRyMvP7RcD+qimO9uwdUvluYmDyLcCi+AAAAAAAAAAAAt9m9j0ZmuqOXgzuimBc4a2jNOlCPNroAAIA/AACAPxrA3j0YUNU+JHq0vOq+M75QWTC9EvzqvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyLd3DfoUQECUhpRSlIwBbJRNSAGMAXSUR0CCOha11GLDdX2UKGgGaAloD0MIcAorFVTFW0CUhpRSlGgVTegDaBZHQIJL098qnWJ1fZQoaAZoCWgPQwhuisdFtY5aQJSGlFKUaBVN6ANoFkdAgk1emelKsnV9lChoBmgJaA9DCIlFDDuMGFhAlIaUUpRoFU3oA2gWR0CCUBzp5eJIdX2UKGgGaAloD0MIuMt+3enLXkCUhpRSlGgVTegDaBZHQIJW8aAFxGV1fZQoaAZoCWgPQwj9+EuL+gBZQJSGlFKUaBVN6ANoFkdAgl6jrAxi5XV9lChoBmgJaA9DCIwwRbm08mFAlIaUUpRoFU3oA2gWR0CCcvMajvd/dX2UKGgGaAloD0MILdFZZhHRWkCUhpRSlGgVTegDaBZHQIJzhdIGyHF1fZQoaAZoCWgPQwj2YFJ8fCNbQJSGlFKUaBVN6ANoFkdAgnP0Hpr1unV9lChoBmgJaA9DCNDVVuyvo2FAlIaUUpRoFU3oA2gWR0CCdXtIkJKKdX2UKGgGaAloD0MIjXqIRncQ7j+UhpRSlGgVTRoBaBZHQILDSSgXdj51fZQoaAZoCWgPQwhpVOBkG6ldQJSGlFKUaBVN6ANoFkdAgsrykKu0TnV9lChoBmgJaA9DCCpwsg3cg11AlIaUUpRoFU3oA2gWR0CCyvh3JPqLdX2UKGgGaAloD0MIcCU7NgLqWECUhpRSlGgVTegDaBZHQILLdUVBUrF1fZQoaAZoCWgPQwhRgv5CjwtWQJSGlFKUaBVN6ANoFkdAgtP0euFHrnV9lChoBmgJaA9DCG/ZIf5hb2BAlIaUUpRoFU3oA2gWR0CC2pfTCtRvdX2UKGgGaAloD0MIMBNFSF0pY0CUhpRSlGgVTegDaBZHQILawXwb2lF1fZQoaAZoCWgPQwjFjPD2ID9dQJSGlFKUaBVN6ANoFkdAgu3xQaaTfXV9lChoBmgJaA9DCKYLsfqjlWNAlIaUUpRoFU3oA2gWR0CDAR4M4LkTdX2UKGgGaAloD0MIQndJnBVIWkCUhpRSlGgVTegDaBZHQIMDDBInSfF1fZQoaAZoCWgPQwjo3O16aRlbQJSGlFKUaBVN6ANoFkdAgwXugpSaVnV9lChoBmgJaA9DCKw7Ftskm2hAlIaUUpRoFU3VAWgWR0CDCIaOxSpBdX2UKGgGaAloD0MItmeWBKi/YECUhpRSlGgVTegDaBZHQIMMXPzFuNx1fZQoaAZoCWgPQwgnUMQihpNbQJSGlFKUaBVN6ANoFkdAgxK4H5aePXV9lChoBmgJaA9DCBB0tKql02BAlIaUUpRoFU3oA2gWR0CDIiwD/2kBdX2UKGgGaAloD0MIAcEcPX5XW0CUhpRSlGgVTegDaBZHQIMipNdqtYB1fZQoaAZoCWgPQwiGjbJ+MzlZQJSGlFKUaBVN6ANoFkdAgyL4E4ecQXV9lChoBmgJaA9DCC/BqQ8kJyPAlIaUUpRoFU1FAWgWR0CDMJBdD6WPdX2UKGgGaAloD0MIdji6SneHQsCUhpRSlGgVTRgBaBZHQINrMDnvDxd1fZQoaAZoCWgPQwi05VyKq+hYQJSGlFKUaBVN6ANoFkdAg3OW9tdiUnV9lChoBmgJaA9DCIffTbfs5ldAlIaUUpRoFU3oA2gWR0CDc5jDsMRZdX2UKGgGaAloD0MIDmd+NQfESkCUhpRSlGgVTegDaBZHQIN0DE9+w1R1fZQoaAZoCWgPQwgoCvSJvIRkQJSGlFKUaBVN6ANoFkdAg3vi7K7qZHV9lChoBmgJaA9DCAL1ZtR84VxAlIaUUpRoFU3oA2gWR0CDggaEzwc6dX2UKGgGaAloD0MIDtjV5KkIZECUhpRSlGgVTegDaBZHQIOCKsbNr0t1fZQoaAZoCWgPQwj0hvvIra0wQJSGlFKUaBVL9WgWR0CDk9joZAIIdX2UKGgGaAloD0MIJhsPttgbYkCUhpRSlGgVTegDaBZHQIOUIOz6ab51fZQoaAZoCWgPQwigU5CfjRhQQJSGlFKUaBVN6ANoFkdAg6YsB6rvLHV9lChoBmgJaA9DCKMFaFvN+l5AlIaUUpRoFU3oA2gWR0CDp9PM0P6LdX2UKGgGaAloD0MId2SsNv8kV0CUhpRSlGgVTegDaBZHQIOqqmCROlB1fZQoaAZoCWgPQwjJrx9igx9gQJSGlFKUaBVN6ANoFkdAg61r7XQMQXV9lChoBmgJaA9DCNqSVRHuwmFAlIaUUpRoFU3oA2gWR0CDuMoQ4CIUdX2UKGgGaAloD0MIUwPN59xdMUCUhpRSlGgVS/VoFkdAg8bcr7O3UnV9lChoBmgJaA9DCAVsByP2bmFAlIaUUpRoFU3oA2gWR0CDy9IxQBPsdX2UKGgGaAloD0MIixpMw/BOXECUhpRSlGgVTegDaBZHQIPMVXko4Mp1fZQoaAZoCWgPQwgwn6wYLttjQJSGlFKUaBVN6ANoFkdAg9vQl0HQhXV9lChoBmgJaA9DCCFX6lmQgGFAlIaUUpRoFU3oA2gWR0CD8sS5AhStdX2UKGgGaAloD0MIS3ZsBOK6V0CUhpRSlGgVTegDaBZHQIQj4GUwBYF1fZQoaAZoCWgPQwh3ZRcMrlViQJSGlFKUaBVN6ANoFkdAhCRYKYzBRHV9lChoBmgJaA9DCIKLFTWYeF1AlIaUUpRoFU3oA2gWR0CELLH6MzdldX2UKGgGaAloD0MItydIbHcHS0CUhpRSlGgVTegDaBZHQIQy2Zy+6Ah1fZQoaAZoCWgPQwheRxyygftUQJSGlFKUaBVN6ANoFkdAhDL/LcKw6nV9lChoBmgJaA9DCBXI7Cx6elVAlIaUUpRoFU3oA2gWR0CERVgBtDUmdX2UKGgGaAloD0MIXwoPml0gW0CUhpRSlGgVTegDaBZHQIRFnyEtdzJ1fZQoaAZoCWgPQwhgHjLlQygswJSGlFKUaBVNGgFoFkdAhFIOOjqOcXV9lChoBmgJaA9DCDqRYKoZGGVAlIaUUpRoFU3oA2gWR0CEWDQgLZzxdX2UKGgGaAloD0MIih74GKziVUCUhpRSlGgVTegDaBZHQIRbET6BRQ91fZQoaAZoCWgPQwjvxRft8QpSQJSGlFKUaBVN6ANoFkdAhF3G5lOGkHV9lChoBmgJaA9DCMMOY9Lf/F9AlIaUUpRoFU3oA2gWR0CEamOCGvfTdX2UKGgGaAloD0MIO4pz1NH9XECUhpRSlGgVTegDaBZHQIR7Mpqh11Z1fZQoaAZoCWgPQwhstBzooR9gQJSGlFKUaBVN6ANoFkdAhID1bzK9wnV9lChoBmgJaA9DCIDY0qOpF15AlIaUUpRoFU3oA2gWR0CEgYliSaE0dX2UKGgGaAloD0MI2lcepKf7XUCUhpRSlGgVTegDaBZHQISTrdepn6F1fZQoaAZoCWgPQwiasWg6O3kfQJSGlFKUaBVNEAFoFkdAhKsLA57w8XV9lChoBmgJaA9DCHsWhPI++VVAlIaUUpRoFU3oA2gWR0CErXvhqCYkdX2UKGgGaAloD0MIrvAuF/EZWkCUhpRSlGgVTegDaBZHQITbqMkyDZl1fZQoaAZoCWgPQwi4j9yadAhjQJSGlFKUaBVN6ANoFkdAhNwXo9s7+3V9lChoBmgJaA9DCIyBdRw/ulhAlIaUUpRoFU3oA2gWR0CE6z8ZUDMedX2UKGgGaAloD0MIhShf0EIbX0CUhpRSlGgVTegDaBZHQITrjWXkYGd1fZQoaAZoCWgPQwjYvKqzWsxaQJSGlFKUaBVN6ANoFkdAhP45z5oGp3V9lChoBmgJaA9DCM8VpYRgg1hAlIaUUpRoFU3oA2gWR0CE/oHbAUL2dX2UKGgGaAloD0MIxOkkW12cYkCUhpRSlGgVTegDaBZHQIUKmavzOHF1fZQoaAZoCWgPQwifkQiN4AVgQJSGlFKUaBVN6ANoFkdAhRA6QvHtGHV9lChoBmgJaA9DCPsD5bb9NWBAlIaUUpRoFU3oA2gWR0CFEo79Q40edX2UKGgGaAloD0MIlZo90ArOX0CUhpRSlGgVTegDaBZHQIUUyZpi7TV1fZQoaAZoCWgPQwj99nXgnGJZQJSGlFKUaBVN6ANoFkdAhR6c1fmcOXV9lChoBmgJaA9DCOPfZ1w4iFxAlIaUUpRoFU3oA2gWR0CFKqwIt16mdX2UKGgGaAloD0MISOF6FK6mXkCUhpRSlGgVTegDaBZHQIUvclNUOut1fZQoaAZoCWgPQwhJFFrW/RMSQJSGlFKUaBVNZwFoFkdAhTy2zOX3QHV9lChoBmgJaA9DCMx7nGnCSFxAlIaUUpRoFU3oA2gWR0CFPvwrlNlAdX2UKGgGaAloD0MIIa0x6IS7WECUhpRSlGgVTegDaBZHQIVTczKs+3Z1fZQoaAZoCWgPQwiVD0HV6DtgQJSGlFKUaBVN6ANoFkdAhVWRSpBHC3V9lChoBmgJaA9DCP8j06HTSl1AlIaUUpRoFU3oA2gWR0CFXb00WM0hdX2UKGgGaAloD0MIidAINq4JVkCUhpRSlGgVTegDaBZHQIVeMYqG1x91fZQoaAZoCWgPQwgEj2/vGiRWQJSGlFKUaBVN6ANoFkdAhZEJztCzC3V9lChoBmgJaA9DCCjXFMjsr2BAlIaUUpRoFU3oA2gWR0CFkTO2RaHLdX2UKGgGaAloD0MI2jwOg/lcWkCUhpRSlGgVTegDaBZHQIWkMCFK02N1fZQoaAZoCWgPQwiFevoI/MxbQJSGlFKUaBVN6ANoFkdAhaR/ixVyWHV9lChoBmgJaA9DCHxGIjSCEmBAlIaUUpRoFU3oA2gWR0CFsnz06HTJdX2UKGgGaAloD0MIN8e5Tbj1YUCUhpRSlGgVTegDaBZHQIW4vqFAVwh1fZQoaAZoCWgPQwhy+nq+Zm5RQJSGlFKUaBVN6ANoFkdAhb5xoRIz33V9lChoBmgJaA9DCCbl7nN8q1lAlIaUUpRoFU3oA2gWR0CFyshfShJzdX2UKGgGaAloD0MIxy3m54ZBXkCUhpRSlGgVTegDaBZHQIXY8ImgJ1J1fZQoaAZoCWgPQwjw2xDjNd9ZQJSGlFKUaBVN6ANoFkdAhd5H3lCCz3V9lChoBmgJaA9DCEvLSL2nIF1AlIaUUpRoFU3oA2gWR0CF7QiNbTttdX2UKGgGaAloD0MItcagE0LKX0CUhpRSlGgVTegDaBZHQIXvgMrmQsB1fZQoaAZoCWgPQwhLy0i9p2dXQJSGlFKUaBVN6ANoFkdAhgOVrRBu43V9lChoBmgJaA9DCCsxz0paAVxAlIaUUpRoFU3oA2gWR0CGBZwVCXyBdX2UKGgGaAloD0MIN/xuumWZY0CUhpRSlGgVTegDaBZHQIYNT0Dlo111fZQoaAZoCWgPQwhPzlDccbFhQJSGlFKUaBVN6ANoFkdAhg2xgAp8W3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}