File size: 38,417 Bytes
de14099
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
{
  "cells": [
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "OjQECQomO51P",
        "outputId": "5dfd6f54-fa54-4291-e1f4-197f867f5af7"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Collecting sentence-transformers\n",
            "  Downloading sentence-transformers-2.2.2.tar.gz (85 kB)\n",
            "\u001b[?25l     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/86.0 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m86.0/86.0 kB\u001b[0m \u001b[31m2.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "Requirement already satisfied: transformers<5.0.0,>=4.6.0 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (4.35.2)\n",
            "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (4.66.1)\n",
            "Requirement already satisfied: torch>=1.6.0 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (2.1.0+cu121)\n",
            "Requirement already satisfied: torchvision in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (0.16.0+cu121)\n",
            "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (1.23.5)\n",
            "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (1.2.2)\n",
            "Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (1.11.4)\n",
            "Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (3.8.1)\n",
            "Collecting sentencepiece (from sentence-transformers)\n",
            "  Downloading sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m13.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: huggingface-hub>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (0.19.4)\n",
            "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers) (3.13.1)\n",
            "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers) (2023.6.0)\n",
            "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers) (2.31.0)\n",
            "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers) (6.0.1)\n",
            "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers) (4.5.0)\n",
            "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers) (23.2)\n",
            "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers) (1.12)\n",
            "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers) (3.2.1)\n",
            "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers) (3.1.2)\n",
            "Requirement already satisfied: triton==2.1.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers) (2.1.0)\n",
            "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers<5.0.0,>=4.6.0->sentence-transformers) (2023.6.3)\n",
            "Requirement already satisfied: tokenizers<0.19,>=0.14 in /usr/local/lib/python3.10/dist-packages (from transformers<5.0.0,>=4.6.0->sentence-transformers) (0.15.0)\n",
            "Requirement already satisfied: safetensors>=0.3.1 in /usr/local/lib/python3.10/dist-packages (from transformers<5.0.0,>=4.6.0->sentence-transformers) (0.4.1)\n",
            "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk->sentence-transformers) (8.1.7)\n",
            "Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from nltk->sentence-transformers) (1.3.2)\n",
            "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->sentence-transformers) (3.2.0)\n",
            "Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /usr/local/lib/python3.10/dist-packages (from torchvision->sentence-transformers) (9.4.0)\n",
            "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.6.0->sentence-transformers) (2.1.3)\n",
            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.4.0->sentence-transformers) (3.3.2)\n",
            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.4.0->sentence-transformers) (3.6)\n",
            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.4.0->sentence-transformers) (2.0.7)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.4.0->sentence-transformers) (2023.11.17)\n",
            "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.6.0->sentence-transformers) (1.3.0)\n",
            "Building wheels for collected packages: sentence-transformers\n",
            "  Building wheel for sentence-transformers (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for sentence-transformers: filename=sentence_transformers-2.2.2-py3-none-any.whl size=125923 sha256=1d52df49cef1d61dc03e7ba01c0fa3c54702cdf6ba8fb1eadc84908d0388c5f4\n",
            "  Stored in directory: /root/.cache/pip/wheels/62/f2/10/1e606fd5f02395388f74e7462910fe851042f97238cbbd902f\n",
            "Successfully built sentence-transformers\n",
            "Installing collected packages: sentencepiece, sentence-transformers\n",
            "Successfully installed sentence-transformers-2.2.2 sentencepiece-0.1.99\n"
          ]
        }
      ],
      "source": [
        "pip install -U sentence-transformers"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "SZM2jEH8Pj-F",
        "outputId": "cdb541d1-47ee-4edf-c068-cfea4097509d"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Requirement already satisfied: hnswlib in /usr/local/lib/python3.10/dist-packages (0.8.0)\n",
            "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from hnswlib) (1.23.5)\n"
          ]
        }
      ],
      "source": [
        "pip install hnswlib"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "n-0NKesbP3mh",
        "outputId": "ac8b352f-72b1-4f93-e36d-817bc0aff9a3"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (4.66.1)\n"
          ]
        }
      ],
      "source": [
        "pip install tqdm"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "QYGY5tvvP91W",
        "outputId": "4196c84b-7b7b-413e-dba8-59fce568c4f2"
      },
      "outputs": [
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "[nltk_data] Downloading package punkt to /root/nltk_data...\n",
            "[nltk_data]   Unzipping tokenizers/punkt.zip.\n"
          ]
        }
      ],
      "source": [
        "import numpy as np\n",
        "import pandas as pd\n",
        "import re\n",
        "# Download the NLTK stopwords\n",
        "import nltk\n",
        "nltk.download('punkt')\n",
        "from nltk.corpus import stopwords\n",
        "import pickle\n",
        "import hnswlib\n",
        "import sentence_transformers as st\n",
        "from sentence_transformers import SentenceTransformer, util\n",
        "import time\n",
        "from tqdm import tqdm\n",
        "import numpy as np"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "UNTPJzEsQ-TV"
      },
      "outputs": [],
      "source": [
        "resumes = pd.read_csv(\"/content/resumes25000+.csv\")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "SCB8sF8xREFt"
      },
      "outputs": [],
      "source": [
        "Preprop_resumes = resumes['Resumes']"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "h4yrDNzWRKUX",
        "outputId": "3b272262-cb6c-47a8-ee4d-d6d9c96295e1"
      },
      "outputs": [
        {
          "data": {
            "text/plain": [
              "0        Full Stack Web Development Teachers Assistant ...\n",
              "1        Quality Assurance Lead Quality Assurance Lead ...\n",
              "2        Front End Developer Santa Rosa, CA Authorized ...\n",
              "3        Student Student Student - New Horizons Compute...\n",
              "4        Sales Associate/ Part-time Sales Associate/ Pa...\n",
              "                               ...                        \n",
              "25609    Systems Administrator  II Darwin, MN Professio...\n",
              "25610    Systems Administrator  Why fit in when you wer...\n",
              "25611    System Administrator Panama City, FL Authorize...\n",
              "25612     Systems Administrator I - Direct Distributors...\n",
              "25613     Systems Administrator - Alfun Consulting Broo...\n",
              "Name: Resumes, Length: 25614, dtype: object"
            ]
          },
          "execution_count": 79,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "Preprop_resumes"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "4U5IfGwORMrY",
        "outputId": "7351954f-c6cf-4e9d-af77-5954fbdfee0f"
      },
      "outputs": [
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "[nltk_data] Downloading package stopwords to /root/nltk_data...\n",
            "[nltk_data]   Package stopwords is already up-to-date!\n"
          ]
        },
        {
          "data": {
            "text/plain": [
              "True"
            ]
          },
          "execution_count": 80,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "import nltk\n",
        "nltk.download('stopwords')"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "ROom4dN9RQXl"
      },
      "outputs": [],
      "source": [
        "# Function for cleaning and preprocessing the resume\n",
        "def clean_resume(resume):\n",
        "    if isinstance(resume, str):\n",
        "        # Convert to lowercase\n",
        "        resume = resume.lower()\n",
        "\n",
        "        # Remove URLs, RT, cc, hashtags, mentions, non-ASCII characters, punctuation, and extra whitespace\n",
        "        resume = re.sub('http\\S+\\s*|RT|cc|#\\S+|@\\S+|[^\\x00-\\x7f]|[^\\w\\s]', ' ', resume)\n",
        "        resume = re.sub('\\s+', ' ', resume).strip()\n",
        "\n",
        "        # Tokenize the resume\n",
        "        tokens = nltk.word_tokenize(resume)\n",
        "\n",
        "        # Remove stopwords\n",
        "        stop_words = set(stopwords.words('english'))\n",
        "        tokens = [token for token in tokens if token.lower() not in stop_words]\n",
        "\n",
        "        # Join the tokens back into a sentence\n",
        "        preprocessed_resume = ' '.join(tokens)\n",
        "\n",
        "        return preprocessed_resume\n",
        "    else:\n",
        "        return ''\n",
        "# Applying the cleaning function to a DataFrame column\n",
        "Preprop_resumes = Preprop_resumes.apply(lambda x: clean_resume(x))"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "NJavXFK7RVp0"
      },
      "outputs": [],
      "source": [
        "resumes = resumes['Resumes'].tolist()"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "y1Xu2OzBWBgC"
      },
      "outputs": [],
      "source": [
        "#Load model from HuggingFace Hub\n",
        "from transformers import AutoTokenizer, AutoModel\n",
        "import torch\n",
        "from tqdm import tqdm\n",
        "# Load model from HuggingFace Hub\n",
        "tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-mpnet-base-v2')\n",
        "model = AutoModel.from_pretrained('sentence-transformers/all-mpnet-base-v2')"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "1EAqfOR9gNvb"
      },
      "outputs": [],
      "source": [
        "from transformers import AutoTokenizer\n",
        "import torch\n",
        "from tqdm import tqdm\n",
        "\n",
        "\n",
        "def embed_resumes_with_progress(model, tokenizer, resumes, chunk_size=200):\n",
        "  \"\"\"\n",
        "  Embeds a list of resumes using the SentenceTransformer model with chunking and progress bar.\n",
        "\n",
        "  Args:\n",
        "    model: The SentenceTransformer model.\n",
        "    tokenizer: The Hugging Face Tokenizer for text pre-processing.\n",
        "    resumes: A list of preprocessed resumes.\n",
        "    chunk_size: Maximum number of tokens per chunk (default: 200).\n",
        "\n",
        "  Returns:\n",
        "    A numpy array containing the averaged embeddings for each resume.\n",
        "  \"\"\"\n",
        "\n",
        "  resume_embeddings = []\n",
        "\n",
        "  use_cuda = torch.cuda.is_available()\n",
        "  device = torch.device(\"cuda\" if use_cuda else \"cpu\")\n",
        "\n",
        "  if use_cuda:\n",
        "    model.cuda()\n",
        "\n",
        "  with tqdm(total=len(resumes)) as pbar:\n",
        "    for resume in resumes:\n",
        "      encoded_chunks = []\n",
        "      chunks = [resume[i:i + chunk_size] for i in range(0, len(resume), chunk_size)]\n",
        "\n",
        "      for chunk in chunks:\n",
        "        encoded_chunk = tokenizer(chunk, padding=True, truncation=True, return_tensors=\"pt\")\n",
        "        encoded_chunk.to(device)\n",
        "\n",
        "        with torch.no_grad():\n",
        "          chunk_embedding = model(**encoded_chunk)[0]\n",
        "          attention_mask = encoded_chunk[\"attention_mask\"]\n",
        "          encoded_chunks.append(chunk_embedding.to(\"cpu\"))\n",
        "\n",
        "      # Concatenate the encoded chunks (CPU)\n",
        "      concatenated_chunks = torch.cat(encoded_chunks, dim=1)\n",
        "      resume_embedding = torch.mean(concatenated_chunks, dim=1)\n",
        "      resume_embeddings.append(resume_embedding)\n",
        "\n",
        "      pbar.update(1)\n",
        "\n",
        "  return torch.cat(resume_embeddings)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "background_save": true,
          "base_uri": "https://localhost:8080/"
        },
        "id": "psy3yK1hSWdi",
        "outputId": "1365af01-30b9-4686-bf0b-3e4c19b57065"
      },
      "outputs": [
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            " 67%|██████▋   | 17274/25614 [1:30:02<35:18,  3.94it/s]"
          ]
        }
      ],
      "source": [
        "# Get resume embeddings\n",
        "import torch\n",
        "resume_embeddings = embed_resumes_with_progress(model, tokenizer, Preprop_resumes)\n",
        "\n",
        "# Access individual embedding\n",
        "resume_embeddings = resume_embeddings[0]"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "25V744JsF8fv",
        "outputId": "0af664d3-e478-41b7-df65-69efb5f98488"
      },
      "outputs": [
        {
          "data": {
            "text/plain": [
              "tensor([[-0.0068,  0.1328, -0.0602,  ..., -0.0290, -0.0340, -0.0490],\n",
              "        [ 0.0852,  0.0535, -0.0172,  ..., -0.0350,  0.0221, -0.0468],\n",
              "        [ 0.0327,  0.1439, -0.0488,  ..., -0.0028, -0.0313, -0.0672],\n",
              "        ...,\n",
              "        [ 0.1147,  0.1450, -0.0392,  ...,  0.0226, -0.0336, -0.0666],\n",
              "        [ 0.1217,  0.0510, -0.0582,  ...,  0.0107, -0.0487, -0.0583],\n",
              "        [ 0.1242,  0.1156, -0.0432,  ..., -0.0239,  0.0333, -0.0741]])"
            ]
          },
          "execution_count": 57,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "resume_embeddings"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "lzjE40xEMV3E",
        "outputId": "bebfda36-3750-4769-d1b5-fef944e453bf"
      },
      "outputs": [
        {
          "data": {
            "text/plain": [
              "torch.Size([9, 768])"
            ]
          },
          "execution_count": 58,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "resume_embeddings.shape"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "aURQbssdFQ49",
        "outputId": "666780b8-c08a-4ab7-bf75-f940893c3c5c"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Drive already mounted at /content/gdrive; to attempt to forcibly remount, call drive.mount(\"/content/gdrive\", force_remount=True).\n"
          ]
        }
      ],
      "source": [
        "from google.colab import drive\n",
        "drive.mount('/content/gdrive')"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "bV8nBxEQIKXy"
      },
      "outputs": [],
      "source": [
        "# Save the model to the specified directory\n",
        "model.save_pretrained(\"/content/gdrive/MyDrive/fine_tuned_mpnetwithchunking_v2\")\n",
        "tokenizer.save_pretrained('/content/gdrive/My Drive/fine_tuned_mpnetwithchunking_v2')"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "7vPDGLbhIKZO"
      },
      "outputs": [],
      "source": [
        "mpnetwith_chunking = ('Abaabookoo/mpnet_withchunking')"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "N4LQsH9vR1A0"
      },
      "outputs": [],
      "source": [
        "def clean_JD(JD):\n",
        "  \"\"\"\n",
        "  Preprocesses the provided JD by:\n",
        "    - Lowercasing all text\n",
        "    - Removing punctuation\n",
        "    - Removing stop words and punctuation and sympols\n",
        "  \"\"\"\n",
        "  JD = JD.lower()\n",
        "  JD = re.sub(r\"[^\\w\\s]\", \"\", JD)\n",
        "  stop_words = stopwords.words(\"english\")\n",
        "  filtered_words = [word for word in JD.split() if word not in stop_words]\n",
        "  cleaned_JD = \" \".join(filtered_words)\n",
        "  return  cleaned_JD"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "IBrQ2KLqTJj2"
      },
      "outputs": [],
      "source": [
        "job_description = \"\"\"\n",
        "\n",
        "Boyave\n",
        "Full-Time\n",
        "Description\n",
        "Content Creator\n",
        "Job brief\n",
        "We are looking for a Content Creator to write and publish various types of pieces for our company’s web pages, like articles, ebooks and social media posts.\n",
        "Content Creator responsibilities include producing marketing copy to advertise our products, writing blog posts about industry-related topics and promoting our content on social media. To be successful in this role, you should have experience with digital publishing and generating traffic and leads for new business. Please share samples of your work (portfolio or links to published articles) along with your application.\n",
        "Ultimately, you will help us reach our target audience by delivering both useful and appealing online information about our company and products.\n",
        "Responsibilities\n",
        "•\tResearch industry-related topics\n",
        "•\tPrepare well-structured drafts using digital publishing platforms\n",
        "•\tCreate and distribute marketing copy to advertise our company and products\n",
        "•\tInterview industry professionals and incorporate their views in blog posts\n",
        "•\tEdit and proofread written pieces before publication\n",
        "•\tConduct keyword research and use SEO guidelines to optimize content\n",
        "•\tPromote content on social networks and monitor engagement (e.g. comments and shares)\n",
        "•\tIdentify customers’ needs and recommend new topics\n",
        "•\tCoordinate with marketing and design teams to illustrate articles\n",
        "•\tMeasure web traffic to content (e.g. conversion and bounce rates)\n",
        "•\tUpdate our websites as needed\n",
        "Requirements and skills\n",
        "•\tProven work experience as a Content Creator, Copywriter or similar role\n",
        "•\tPortfolio of published articles\n",
        "•\tHands-on experience with Content Management Systems (e.g. WordPress)\n",
        "•\tExcellent writing and editing skills in English\n",
        "•\tAn ability to fact-check long-form content pieces\n",
        "•\tTime-management skills\n",
        "•\tFamiliarity with SEO\n",
        "•\tBSc in Marketing, English, Journalism or relevant field\"\"\""
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "Stf7MUqXT1Aw",
        "outputId": "54a7511e-aa37-42b6-e2e1-612177887617"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Cleaned Job Description: boyave fulltime description content creator job brief looking content creator write publish various types pieces companys web pages like articles ebooks social media posts content creator responsibilities include producing marketing copy advertise products writing blog posts industryrelated topics promoting content social media successful role experience digital publishing generating traffic leads new business please share samples work portfolio links published articles along application ultimately help us reach target audience delivering useful appealing online information company products responsibilities research industryrelated topics prepare wellstructured drafts using digital publishing platforms create distribute marketing copy advertise company products interview industry professionals incorporate views blog posts edit proofread written pieces publication conduct keyword research use seo guidelines optimize content promote content social networks monitor engagement eg comments shares identify customers needs recommend new topics coordinate marketing design teams illustrate articles measure web traffic content eg conversion bounce rates update websites needed requirements skills proven work experience content creator copywriter similar role portfolio published articles handson experience content management systems eg wordpress excellent writing editing skills english ability factcheck longform content pieces timemanagement skills familiarity seo bsc marketing english journalism relevant field\n"
          ]
        }
      ],
      "source": [
        "cleaned_job_description = clean_JD(job_description)\n",
        "print(\"Cleaned Job Description:\", cleaned_job_description)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "PjLu1p7-Lyw9"
      },
      "outputs": [],
      "source": [
        "import torch\n",
        "\n",
        "def embed_JD_with_progress(model, tokenizer, cleaned_job_description, chunk_size=200):\n",
        "  \"\"\"\n",
        "  Embeds a job description using the SentenceTransformer model with chunking and progress bar.\n",
        "\n",
        "  Args:\n",
        "    model: The SentenceTransformer model.\n",
        "    tokenizer: The Hugging Face Tokenizer for text pre-processing.\n",
        "    cleaned_job_description: A preprocessed job description string.\n",
        "    chunk_size: Maximum number of tokens per chunk (default: 200).\n",
        "\n",
        "  Returns:\n",
        "    A numpy array containing the embedding for the job description.\n",
        "  \"\"\"\n",
        "\n",
        "  encoded_chunks = []\n",
        "  chunks = [cleaned_job_description[i:i+chunk_size] for i in range(0, len(cleaned_job_description), chunk_size)]\n",
        "\n",
        "  use_cuda = torch.cuda.is_available()\n",
        "  device = torch.device(\"cuda\" if use_cuda else \"cpu\")\n",
        "  model.to(device)  # Move model to GPU or CPU\n",
        "\n",
        "  with tqdm(total=len(chunks), desc=\"Embedding Job Description\") as pbar:\n",
        "    for chunk in chunks:\n",
        "      encoded_chunk = tokenizer(chunk, padding=True, truncation=True, return_tensors=\"pt\").to(device)  # Move input to device\n",
        "      with torch.no_grad():\n",
        "        chunk_embedding = model(**encoded_chunk)[0]\n",
        "        attention_mask = encoded_chunk[\"attention_mask\"]\n",
        "        encoded_chunks.append(chunk_embedding.to(\"cpu\"))  # Move output back to CPU\n",
        "      pbar.update(1)\n",
        "\n",
        "  concatenated_chunks = torch.cat(encoded_chunks, dim=1)\n",
        "  JD_embeddings = torch.mean(concatenated_chunks, dim=1)\n",
        "  return JD_embeddings.numpy()\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "XVcxz9m5UA_3",
        "outputId": "9e575368-0865-43cc-b9f8-831942b322a9"
      },
      "outputs": [
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "Embedding Job Description: 100%|██████████| 8/8 [00:00<00:00, 87.36it/s]\n"
          ]
        }
      ],
      "source": [
        "# Get resume embeddings\n",
        "import torch\n",
        "JD_embeddings = embed_JD_with_progress(model, tokenizer, cleaned_job_description)\n",
        "\n",
        "# Access individual embedding\n",
        "first_JD_embedding = JD_embeddings[0]"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "Cf98RqMxMLfi",
        "outputId": "29387588-b90a-473e-8e1c-1d46ced327c0"
      },
      "outputs": [
        {
          "data": {
            "text/plain": [
              "(1, 768)"
            ]
          },
          "execution_count": 43,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "JD_embeddings.shape"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "Xt6ldCC9UFps"
      },
      "outputs": [],
      "source": [
        "def similarity_percentage(similarity_score):\n",
        "    if similarity_score < 0.2:\n",
        "        return 0\n",
        "    elif 0.2 <= similarity_score < 0.3:\n",
        "        return similarity_score - 0.25\n",
        "    elif 0.3 <= similarity_score < 0.4:\n",
        "        return similarity_score - 0.23\n",
        "    elif 0.4 <= similarity_score < 0.55:\n",
        "        return similarity_score - 0.19\n",
        "    elif 0.55 <= similarity_score < 0.65:\n",
        "        return similarity_score - 0.14\n",
        "    else:\n",
        "      return similarity_score - 0.1"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "I2COAaJuULH-"
      },
      "outputs": [],
      "source": [
        "def create_hnsw_index(embeddings, max_elements, ef_construction, M, ef):\n",
        "    \"\"\"\n",
        "    Creates and initializes an HNSWLib index with the specified parameters.\n",
        "\n",
        "    Args:\n",
        "        embeddings: A list of embedding vectors.\n",
        "        max_elements: Maximum number of elements to store in the index.\n",
        "        ef_construction: Number of elements to consider during index construction.\n",
        "        M: Maximum number of connections per node in the HNSW graph.\n",
        "        ef: Number of elements to consider during search.\n",
        "\n",
        "    Returns:\n",
        "        An HNSWLib index object.\n",
        "    \"\"\"\n",
        "    embedding_size = 728\n",
        "    index = hnswlib.Index(space='cosine', dim=embedding_size)\n",
        "    index.init_index(max_elements, ef_construction, M)\n",
        "    index.add_items(resume_embeddings, list(range(len(resume_embeddings))))\n",
        "    index.set_ef(ef)\n",
        "    return index"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 366
        },
        "id": "_b1NVudOUS_t",
        "outputId": "f06d6086-8d33-41d7-d10a-cbba96da9493"
      },
      "outputs": [
        {
          "ename": "RuntimeError",
          "evalue": "ignored",
          "output_type": "error",
          "traceback": [
            "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
            "\u001b[0;31mRuntimeError\u001b[0m                              Traceback (most recent call last)",
            "\u001b[0;32m<ipython-input-42-49c53dc4dcf2>\u001b[0m in \u001b[0;36m<cell line: 6>\u001b[0;34m()\u001b[0m\n\u001b[1;32m      4\u001b[0m \u001b[0mM\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m200\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      5\u001b[0m \u001b[0mef\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m50\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mindex\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcreate_hnsw_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresume_embeddings\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmax_elements\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mef_construction\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mM\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mef\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      7\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Corpus loaded with {} resumes / embeddings\"\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresume_embeddings\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      8\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m<ipython-input-41-d1d7d9ba6c84>\u001b[0m in \u001b[0;36mcreate_hnsw_index\u001b[0;34m(embeddings, max_elements, ef_construction, M, ef)\u001b[0m\n\u001b[1;32m     16\u001b[0m     \u001b[0mindex\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mhnswlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mIndex\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mspace\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'cosine'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdim\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0membedding_size\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     17\u001b[0m     \u001b[0mindex\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minit_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmax_elements\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mef_construction\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mM\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 18\u001b[0;31m     \u001b[0mindex\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_items\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresume_embeddings\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresume_embeddings\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     19\u001b[0m     \u001b[0mindex\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_ef\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mef\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     20\u001b[0m     \u001b[0;32mreturn\u001b[0m \u001b[0mindex\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;31mRuntimeError\u001b[0m: Wrong dimensionality of the vectors"
          ]
        }
      ],
      "source": [
        "# Define parameters for the index\n",
        "max_elements = len(resume_embeddings)\n",
        "ef_construction = 2000\n",
        "M = 200\n",
        "ef = 50\n",
        "index = create_hnsw_index(resume_embeddings, max_elements, ef_construction, M, ef)\n",
        "print(\"Corpus loaded with {} resumes / embeddings\".format(len(resume_embeddings)))\n",
        "\n",
        "# Retrieve resumes based on job description\n",
        "take_k_hits = int(input(\"\\nHow many top resumes do you want to be retrieved?\\n\\n\"))\n",
        "\n",
        "start_time = time.time()\n",
        "\n",
        "resume_ids, dist = index.knn_query(JD_embeddings, take_k_hits)\n",
        "\n",
        "# Calculate the similarity percentage and create a DataFrame\n",
        "hits = [{'resume_id': id, 'Original_Score': 1 - score, 'Adjusted_Score': similarity_percentage(1 - score)} for id, score in zip(resume_ids[0], dist[0])]\n",
        "hits = sorted(hits, key=lambda x: x['Adjusted_Score'], reverse=True)\n",
        "\n",
        "end_time = time.time()\n",
        "\n",
        "print(\"Results (after {:.3f} seconds):\".format(end_time - start_time))\n",
        "\n",
        "# Create a DataFrame with original and adjusted similarity scores\n",
        "Resumeranking = pd.DataFrame(hits[:take_k_hits])\n",
        "Resumeranking['Resumes'] = Resumeranking['resume_id'].map(lambda x: resumes[x])\n",
        "Resumeranking = Resumeranking.drop(['resume_id'], axis=1)\n",
        "\n",
        "# Convert Adjusted_Score to percentage format\n",
        "Resumeranking['Original_Score'] = Resumeranking['Original_Score']\n",
        "Resumeranking['Adjusted_Score'] = (Resumeranking['Adjusted_Score'] * 100).round(2)\n",
        "Resumeranking['Adjusted_Score'] = Resumeranking['Adjusted_Score'].astype(str) + '%'\n",
        "\n",
        "Resumeranking = Resumeranking[['Resumes', 'Original_Score', 'Adjusted_Score']]\n",
        "Resumeranking"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "DJzSu07bL7hx"
      },
      "outputs": [],
      "source": []
    }
  ],
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}