Upload 7 files
Browse files- Untitled153.ipynb +684 -0
- config.json +24 -0
- model.safetensors +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +72 -0
- vocab.txt +0 -0
Untitled153.ipynb
ADDED
@@ -0,0 +1,684 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": [],
|
7 |
+
"gpuType": "T4"
|
8 |
+
},
|
9 |
+
"kernelspec": {
|
10 |
+
"name": "python3",
|
11 |
+
"display_name": "Python 3"
|
12 |
+
},
|
13 |
+
"language_info": {
|
14 |
+
"name": "python"
|
15 |
+
},
|
16 |
+
"accelerator": "GPU"
|
17 |
+
},
|
18 |
+
"cells": [
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": 21,
|
22 |
+
"metadata": {
|
23 |
+
"colab": {
|
24 |
+
"base_uri": "https://localhost:8080/"
|
25 |
+
},
|
26 |
+
"id": "H-2L-S6b4ukm",
|
27 |
+
"outputId": "12789315-f584-4d98-afd4-2bd35d0453d9"
|
28 |
+
},
|
29 |
+
"outputs": [
|
30 |
+
{
|
31 |
+
"output_type": "stream",
|
32 |
+
"name": "stdout",
|
33 |
+
"text": [
|
34 |
+
"Requirement already satisfied: transformers in /usr/local/lib/python3.10/dist-packages (4.35.2)\n",
|
35 |
+
"Requirement already satisfied: datasets in /usr/local/lib/python3.10/dist-packages (2.15.0)\n",
|
36 |
+
"Requirement already satisfied: huggingface_hub in /usr/local/lib/python3.10/dist-packages (0.19.4)\n",
|
37 |
+
"Requirement already satisfied: sentence-transformers in /usr/local/lib/python3.10/dist-packages (2.2.2)\n",
|
38 |
+
"Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers) (3.13.1)\n",
|
39 |
+
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (1.23.5)\n",
|
40 |
+
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers) (23.2)\n",
|
41 |
+
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (6.0.1)\n",
|
42 |
+
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (2023.6.3)\n",
|
43 |
+
"Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers) (2.31.0)\n",
|
44 |
+
"Requirement already satisfied: tokenizers<0.19,>=0.14 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.15.0)\n",
|
45 |
+
"Requirement already satisfied: safetensors>=0.3.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.4.1)\n",
|
46 |
+
"Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers) (4.66.1)\n",
|
47 |
+
"Requirement already satisfied: pyarrow>=8.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (10.0.1)\n",
|
48 |
+
"Requirement already satisfied: pyarrow-hotfix in /usr/local/lib/python3.10/dist-packages (from datasets) (0.6)\n",
|
49 |
+
"Requirement already satisfied: dill<0.3.8,>=0.3.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.3.7)\n",
|
50 |
+
"Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets) (1.5.3)\n",
|
51 |
+
"Requirement already satisfied: xxhash in /usr/local/lib/python3.10/dist-packages (from datasets) (3.4.1)\n",
|
52 |
+
"Requirement already satisfied: multiprocess in /usr/local/lib/python3.10/dist-packages (from datasets) (0.70.15)\n",
|
53 |
+
"Requirement already satisfied: fsspec[http]<=2023.10.0,>=2023.1.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (2023.6.0)\n",
|
54 |
+
"Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets) (3.9.1)\n",
|
55 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub) (4.5.0)\n",
|
56 |
+
"Requirement already satisfied: torch>=1.6.0 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (2.1.0+cu121)\n",
|
57 |
+
"Requirement already satisfied: torchvision in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (0.16.0+cu121)\n",
|
58 |
+
"Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (1.2.2)\n",
|
59 |
+
"Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (1.11.4)\n",
|
60 |
+
"Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (3.8.1)\n",
|
61 |
+
"Requirement already satisfied: sentencepiece in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (0.1.99)\n",
|
62 |
+
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (23.1.0)\n",
|
63 |
+
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (6.0.4)\n",
|
64 |
+
"Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.9.4)\n",
|
65 |
+
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.4.0)\n",
|
66 |
+
"Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.3.1)\n",
|
67 |
+
"Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (4.0.3)\n",
|
68 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.3.2)\n",
|
69 |
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.6)\n",
|
70 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2.0.7)\n",
|
71 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2023.11.17)\n",
|
72 |
+
"Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers) (1.12)\n",
|
73 |
+
"Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers) (3.2.1)\n",
|
74 |
+
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers) (3.1.2)\n",
|
75 |
+
"Requirement already satisfied: triton==2.1.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers) (2.1.0)\n",
|
76 |
+
"Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk->sentence-transformers) (8.1.7)\n",
|
77 |
+
"Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from nltk->sentence-transformers) (1.3.2)\n",
|
78 |
+
"Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2.8.2)\n",
|
79 |
+
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2023.3.post1)\n",
|
80 |
+
"Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->sentence-transformers) (3.2.0)\n",
|
81 |
+
"Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /usr/local/lib/python3.10/dist-packages (from torchvision->sentence-transformers) (9.4.0)\n",
|
82 |
+
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas->datasets) (1.16.0)\n",
|
83 |
+
"Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.6.0->sentence-transformers) (2.1.3)\n",
|
84 |
+
"Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.6.0->sentence-transformers) (1.3.0)\n"
|
85 |
+
]
|
86 |
+
}
|
87 |
+
],
|
88 |
+
"source": [
|
89 |
+
"pip install transformers datasets huggingface_hub sentence-transformers"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "code",
|
94 |
+
"source": [
|
95 |
+
"import re\n",
|
96 |
+
"import nltk\n",
|
97 |
+
"from nltk.corpus import stopwords\n",
|
98 |
+
"import torch\n",
|
99 |
+
"from torch.utils.data import DataLoader, TensorDataset\n",
|
100 |
+
"from transformers import AutoTokenizer, AutoModelForMaskedLM, AdamW\n",
|
101 |
+
"import pandas as pd\n",
|
102 |
+
"from tqdm import tqdm"
|
103 |
+
],
|
104 |
+
"metadata": {
|
105 |
+
"id": "Jk533_F14yV8"
|
106 |
+
},
|
107 |
+
"execution_count": 22,
|
108 |
+
"outputs": []
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"cell_type": "code",
|
112 |
+
"source": [
|
113 |
+
"# Load your unlabeled dataset\n",
|
114 |
+
"resumes = pd.read_csv('/content/resumes6000.csv')"
|
115 |
+
],
|
116 |
+
"metadata": {
|
117 |
+
"id": "IR-KIxHd5iyu"
|
118 |
+
},
|
119 |
+
"execution_count": 23,
|
120 |
+
"outputs": []
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"cell_type": "code",
|
124 |
+
"source": [
|
125 |
+
"resumes.head(5)"
|
126 |
+
],
|
127 |
+
"metadata": {
|
128 |
+
"colab": {
|
129 |
+
"base_uri": "https://localhost:8080/",
|
130 |
+
"height": 206
|
131 |
+
},
|
132 |
+
"id": "Y0sgNBwr5mzH",
|
133 |
+
"outputId": "9728d843-eef7-4719-c9ed-418155127788"
|
134 |
+
},
|
135 |
+
"execution_count": 24,
|
136 |
+
"outputs": [
|
137 |
+
{
|
138 |
+
"output_type": "execute_result",
|
139 |
+
"data": {
|
140 |
+
"text/plain": [
|
141 |
+
" Resumes\n",
|
142 |
+
"0 Global Sales Administrator Biamp Systems Globa...\n",
|
143 |
+
"1 Python Developer - Sprint 8 years of experien...\n",
|
144 |
+
"2 IT Project Manager - Scrum Master of Digital ...\n",
|
145 |
+
"3 UI Front End Developer UI <span class=\"hl\">Fro...\n",
|
146 |
+
"4 IT Security Analyst Camp Hill, PA Work Experie..."
|
147 |
+
],
|
148 |
+
"text/html": [
|
149 |
+
"\n",
|
150 |
+
" <div id=\"df-4103e9a9-d2f4-4f6d-a97a-5a5ae9a6a217\" class=\"colab-df-container\">\n",
|
151 |
+
" <div>\n",
|
152 |
+
"<style scoped>\n",
|
153 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
154 |
+
" vertical-align: middle;\n",
|
155 |
+
" }\n",
|
156 |
+
"\n",
|
157 |
+
" .dataframe tbody tr th {\n",
|
158 |
+
" vertical-align: top;\n",
|
159 |
+
" }\n",
|
160 |
+
"\n",
|
161 |
+
" .dataframe thead th {\n",
|
162 |
+
" text-align: right;\n",
|
163 |
+
" }\n",
|
164 |
+
"</style>\n",
|
165 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
166 |
+
" <thead>\n",
|
167 |
+
" <tr style=\"text-align: right;\">\n",
|
168 |
+
" <th></th>\n",
|
169 |
+
" <th>Resumes</th>\n",
|
170 |
+
" </tr>\n",
|
171 |
+
" </thead>\n",
|
172 |
+
" <tbody>\n",
|
173 |
+
" <tr>\n",
|
174 |
+
" <th>0</th>\n",
|
175 |
+
" <td>Global Sales Administrator Biamp Systems Globa...</td>\n",
|
176 |
+
" </tr>\n",
|
177 |
+
" <tr>\n",
|
178 |
+
" <th>1</th>\n",
|
179 |
+
" <td>Python Developer - Sprint 8 years of experien...</td>\n",
|
180 |
+
" </tr>\n",
|
181 |
+
" <tr>\n",
|
182 |
+
" <th>2</th>\n",
|
183 |
+
" <td>IT Project Manager - Scrum Master of Digital ...</td>\n",
|
184 |
+
" </tr>\n",
|
185 |
+
" <tr>\n",
|
186 |
+
" <th>3</th>\n",
|
187 |
+
" <td>UI Front End Developer UI <span class=\"hl\">Fro...</td>\n",
|
188 |
+
" </tr>\n",
|
189 |
+
" <tr>\n",
|
190 |
+
" <th>4</th>\n",
|
191 |
+
" <td>IT Security Analyst Camp Hill, PA Work Experie...</td>\n",
|
192 |
+
" </tr>\n",
|
193 |
+
" </tbody>\n",
|
194 |
+
"</table>\n",
|
195 |
+
"</div>\n",
|
196 |
+
" <div class=\"colab-df-buttons\">\n",
|
197 |
+
"\n",
|
198 |
+
" <div class=\"colab-df-container\">\n",
|
199 |
+
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-4103e9a9-d2f4-4f6d-a97a-5a5ae9a6a217')\"\n",
|
200 |
+
" title=\"Convert this dataframe to an interactive table.\"\n",
|
201 |
+
" style=\"display:none;\">\n",
|
202 |
+
"\n",
|
203 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
|
204 |
+
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
|
205 |
+
" </svg>\n",
|
206 |
+
" </button>\n",
|
207 |
+
"\n",
|
208 |
+
" <style>\n",
|
209 |
+
" .colab-df-container {\n",
|
210 |
+
" display:flex;\n",
|
211 |
+
" gap: 12px;\n",
|
212 |
+
" }\n",
|
213 |
+
"\n",
|
214 |
+
" .colab-df-convert {\n",
|
215 |
+
" background-color: #E8F0FE;\n",
|
216 |
+
" border: none;\n",
|
217 |
+
" border-radius: 50%;\n",
|
218 |
+
" cursor: pointer;\n",
|
219 |
+
" display: none;\n",
|
220 |
+
" fill: #1967D2;\n",
|
221 |
+
" height: 32px;\n",
|
222 |
+
" padding: 0 0 0 0;\n",
|
223 |
+
" width: 32px;\n",
|
224 |
+
" }\n",
|
225 |
+
"\n",
|
226 |
+
" .colab-df-convert:hover {\n",
|
227 |
+
" background-color: #E2EBFA;\n",
|
228 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
229 |
+
" fill: #174EA6;\n",
|
230 |
+
" }\n",
|
231 |
+
"\n",
|
232 |
+
" .colab-df-buttons div {\n",
|
233 |
+
" margin-bottom: 4px;\n",
|
234 |
+
" }\n",
|
235 |
+
"\n",
|
236 |
+
" [theme=dark] .colab-df-convert {\n",
|
237 |
+
" background-color: #3B4455;\n",
|
238 |
+
" fill: #D2E3FC;\n",
|
239 |
+
" }\n",
|
240 |
+
"\n",
|
241 |
+
" [theme=dark] .colab-df-convert:hover {\n",
|
242 |
+
" background-color: #434B5C;\n",
|
243 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
244 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
245 |
+
" fill: #FFFFFF;\n",
|
246 |
+
" }\n",
|
247 |
+
" </style>\n",
|
248 |
+
"\n",
|
249 |
+
" <script>\n",
|
250 |
+
" const buttonEl =\n",
|
251 |
+
" document.querySelector('#df-4103e9a9-d2f4-4f6d-a97a-5a5ae9a6a217 button.colab-df-convert');\n",
|
252 |
+
" buttonEl.style.display =\n",
|
253 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
254 |
+
"\n",
|
255 |
+
" async function convertToInteractive(key) {\n",
|
256 |
+
" const element = document.querySelector('#df-4103e9a9-d2f4-4f6d-a97a-5a5ae9a6a217');\n",
|
257 |
+
" const dataTable =\n",
|
258 |
+
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
259 |
+
" [key], {});\n",
|
260 |
+
" if (!dataTable) return;\n",
|
261 |
+
"\n",
|
262 |
+
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
263 |
+
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
264 |
+
" + ' to learn more about interactive tables.';\n",
|
265 |
+
" element.innerHTML = '';\n",
|
266 |
+
" dataTable['output_type'] = 'display_data';\n",
|
267 |
+
" await google.colab.output.renderOutput(dataTable, element);\n",
|
268 |
+
" const docLink = document.createElement('div');\n",
|
269 |
+
" docLink.innerHTML = docLinkHtml;\n",
|
270 |
+
" element.appendChild(docLink);\n",
|
271 |
+
" }\n",
|
272 |
+
" </script>\n",
|
273 |
+
" </div>\n",
|
274 |
+
"\n",
|
275 |
+
"\n",
|
276 |
+
"<div id=\"df-a376dc72-fa58-4744-913c-c4534b40ab5d\">\n",
|
277 |
+
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-a376dc72-fa58-4744-913c-c4534b40ab5d')\"\n",
|
278 |
+
" title=\"Suggest charts\"\n",
|
279 |
+
" style=\"display:none;\">\n",
|
280 |
+
"\n",
|
281 |
+
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
282 |
+
" width=\"24px\">\n",
|
283 |
+
" <g>\n",
|
284 |
+
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
|
285 |
+
" </g>\n",
|
286 |
+
"</svg>\n",
|
287 |
+
" </button>\n",
|
288 |
+
"\n",
|
289 |
+
"<style>\n",
|
290 |
+
" .colab-df-quickchart {\n",
|
291 |
+
" --bg-color: #E8F0FE;\n",
|
292 |
+
" --fill-color: #1967D2;\n",
|
293 |
+
" --hover-bg-color: #E2EBFA;\n",
|
294 |
+
" --hover-fill-color: #174EA6;\n",
|
295 |
+
" --disabled-fill-color: #AAA;\n",
|
296 |
+
" --disabled-bg-color: #DDD;\n",
|
297 |
+
" }\n",
|
298 |
+
"\n",
|
299 |
+
" [theme=dark] .colab-df-quickchart {\n",
|
300 |
+
" --bg-color: #3B4455;\n",
|
301 |
+
" --fill-color: #D2E3FC;\n",
|
302 |
+
" --hover-bg-color: #434B5C;\n",
|
303 |
+
" --hover-fill-color: #FFFFFF;\n",
|
304 |
+
" --disabled-bg-color: #3B4455;\n",
|
305 |
+
" --disabled-fill-color: #666;\n",
|
306 |
+
" }\n",
|
307 |
+
"\n",
|
308 |
+
" .colab-df-quickchart {\n",
|
309 |
+
" background-color: var(--bg-color);\n",
|
310 |
+
" border: none;\n",
|
311 |
+
" border-radius: 50%;\n",
|
312 |
+
" cursor: pointer;\n",
|
313 |
+
" display: none;\n",
|
314 |
+
" fill: var(--fill-color);\n",
|
315 |
+
" height: 32px;\n",
|
316 |
+
" padding: 0;\n",
|
317 |
+
" width: 32px;\n",
|
318 |
+
" }\n",
|
319 |
+
"\n",
|
320 |
+
" .colab-df-quickchart:hover {\n",
|
321 |
+
" background-color: var(--hover-bg-color);\n",
|
322 |
+
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
323 |
+
" fill: var(--button-hover-fill-color);\n",
|
324 |
+
" }\n",
|
325 |
+
"\n",
|
326 |
+
" .colab-df-quickchart-complete:disabled,\n",
|
327 |
+
" .colab-df-quickchart-complete:disabled:hover {\n",
|
328 |
+
" background-color: var(--disabled-bg-color);\n",
|
329 |
+
" fill: var(--disabled-fill-color);\n",
|
330 |
+
" box-shadow: none;\n",
|
331 |
+
" }\n",
|
332 |
+
"\n",
|
333 |
+
" .colab-df-spinner {\n",
|
334 |
+
" border: 2px solid var(--fill-color);\n",
|
335 |
+
" border-color: transparent;\n",
|
336 |
+
" border-bottom-color: var(--fill-color);\n",
|
337 |
+
" animation:\n",
|
338 |
+
" spin 1s steps(1) infinite;\n",
|
339 |
+
" }\n",
|
340 |
+
"\n",
|
341 |
+
" @keyframes spin {\n",
|
342 |
+
" 0% {\n",
|
343 |
+
" border-color: transparent;\n",
|
344 |
+
" border-bottom-color: var(--fill-color);\n",
|
345 |
+
" border-left-color: var(--fill-color);\n",
|
346 |
+
" }\n",
|
347 |
+
" 20% {\n",
|
348 |
+
" border-color: transparent;\n",
|
349 |
+
" border-left-color: var(--fill-color);\n",
|
350 |
+
" border-top-color: var(--fill-color);\n",
|
351 |
+
" }\n",
|
352 |
+
" 30% {\n",
|
353 |
+
" border-color: transparent;\n",
|
354 |
+
" border-left-color: var(--fill-color);\n",
|
355 |
+
" border-top-color: var(--fill-color);\n",
|
356 |
+
" border-right-color: var(--fill-color);\n",
|
357 |
+
" }\n",
|
358 |
+
" 40% {\n",
|
359 |
+
" border-color: transparent;\n",
|
360 |
+
" border-right-color: var(--fill-color);\n",
|
361 |
+
" border-top-color: var(--fill-color);\n",
|
362 |
+
" }\n",
|
363 |
+
" 60% {\n",
|
364 |
+
" border-color: transparent;\n",
|
365 |
+
" border-right-color: var(--fill-color);\n",
|
366 |
+
" }\n",
|
367 |
+
" 80% {\n",
|
368 |
+
" border-color: transparent;\n",
|
369 |
+
" border-right-color: var(--fill-color);\n",
|
370 |
+
" border-bottom-color: var(--fill-color);\n",
|
371 |
+
" }\n",
|
372 |
+
" 90% {\n",
|
373 |
+
" border-color: transparent;\n",
|
374 |
+
" border-bottom-color: var(--fill-color);\n",
|
375 |
+
" }\n",
|
376 |
+
" }\n",
|
377 |
+
"</style>\n",
|
378 |
+
"\n",
|
379 |
+
" <script>\n",
|
380 |
+
" async function quickchart(key) {\n",
|
381 |
+
" const quickchartButtonEl =\n",
|
382 |
+
" document.querySelector('#' + key + ' button');\n",
|
383 |
+
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
|
384 |
+
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
|
385 |
+
" try {\n",
|
386 |
+
" const charts = await google.colab.kernel.invokeFunction(\n",
|
387 |
+
" 'suggestCharts', [key], {});\n",
|
388 |
+
" } catch (error) {\n",
|
389 |
+
" console.error('Error during call to suggestCharts:', error);\n",
|
390 |
+
" }\n",
|
391 |
+
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
|
392 |
+
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
|
393 |
+
" }\n",
|
394 |
+
" (() => {\n",
|
395 |
+
" let quickchartButtonEl =\n",
|
396 |
+
" document.querySelector('#df-a376dc72-fa58-4744-913c-c4534b40ab5d button');\n",
|
397 |
+
" quickchartButtonEl.style.display =\n",
|
398 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
399 |
+
" })();\n",
|
400 |
+
" </script>\n",
|
401 |
+
"</div>\n",
|
402 |
+
"\n",
|
403 |
+
" </div>\n",
|
404 |
+
" </div>\n"
|
405 |
+
]
|
406 |
+
},
|
407 |
+
"metadata": {},
|
408 |
+
"execution_count": 24
|
409 |
+
}
|
410 |
+
]
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"cell_type": "code",
|
414 |
+
"source": [
|
415 |
+
"# Define the function for cleaning text\n",
|
416 |
+
"def clean_text(text):\n",
|
417 |
+
" return re.sub(r\"<span class=\\\"hl\\\">(.*?)</span>\", r\"\\1\", text)\n",
|
418 |
+
"# Apply the function to the entire column\n",
|
419 |
+
"resumes['Resumes'] = resumes['Resumes'].apply(clean_text)"
|
420 |
+
],
|
421 |
+
"metadata": {
|
422 |
+
"id": "MrCrvWv65nAw"
|
423 |
+
},
|
424 |
+
"execution_count": 26,
|
425 |
+
"outputs": []
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"cell_type": "code",
|
429 |
+
"source": [
|
430 |
+
" import nltk\n",
|
431 |
+
" nltk.download('punkt')"
|
432 |
+
],
|
433 |
+
"metadata": {
|
434 |
+
"colab": {
|
435 |
+
"base_uri": "https://localhost:8080/"
|
436 |
+
},
|
437 |
+
"id": "aUdNZquW4yXo",
|
438 |
+
"outputId": "254067bd-9b4e-4e98-b8a0-9c661e6955f3"
|
439 |
+
},
|
440 |
+
"execution_count": 27,
|
441 |
+
"outputs": [
|
442 |
+
{
|
443 |
+
"output_type": "stream",
|
444 |
+
"name": "stderr",
|
445 |
+
"text": [
|
446 |
+
"[nltk_data] Downloading package punkt to /root/nltk_data...\n",
|
447 |
+
"[nltk_data] Package punkt is already up-to-date!\n"
|
448 |
+
]
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"output_type": "execute_result",
|
452 |
+
"data": {
|
453 |
+
"text/plain": [
|
454 |
+
"True"
|
455 |
+
]
|
456 |
+
},
|
457 |
+
"metadata": {},
|
458 |
+
"execution_count": 27
|
459 |
+
}
|
460 |
+
]
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"cell_type": "code",
|
464 |
+
"source": [
|
465 |
+
"import nltk\n",
|
466 |
+
"nltk.download('stopwords')"
|
467 |
+
],
|
468 |
+
"metadata": {
|
469 |
+
"colab": {
|
470 |
+
"base_uri": "https://localhost:8080/"
|
471 |
+
},
|
472 |
+
"id": "09C8uhGu51Vh",
|
473 |
+
"outputId": "3cd7a9af-293f-4c3c-a073-92fe26c49bd5"
|
474 |
+
},
|
475 |
+
"execution_count": 28,
|
476 |
+
"outputs": [
|
477 |
+
{
|
478 |
+
"output_type": "stream",
|
479 |
+
"name": "stderr",
|
480 |
+
"text": [
|
481 |
+
"[nltk_data] Downloading package stopwords to /root/nltk_data...\n",
|
482 |
+
"[nltk_data] Package stopwords is already up-to-date!\n"
|
483 |
+
]
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"output_type": "execute_result",
|
487 |
+
"data": {
|
488 |
+
"text/plain": [
|
489 |
+
"True"
|
490 |
+
]
|
491 |
+
},
|
492 |
+
"metadata": {},
|
493 |
+
"execution_count": 28
|
494 |
+
}
|
495 |
+
]
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"cell_type": "code",
|
499 |
+
"source": [
|
500 |
+
"# Function for cleaning and preprocessing the resume\n",
|
501 |
+
"def clean_resume(resume):\n",
|
502 |
+
" if isinstance(resume, str):\n",
|
503 |
+
" # Convert to lowercase\n",
|
504 |
+
" resume = resume.lower()\n",
|
505 |
+
"\n",
|
506 |
+
" # Remove URLs, RT, cc, hashtags, mentions, non-ASCII characters, punctuation, and extra whitespace\n",
|
507 |
+
" resume = re.sub('http\\S+\\s*|RT|cc|#\\S+|@\\S+|[^\\x00-\\x7f]|[^\\w\\s]', ' ', resume)\n",
|
508 |
+
" resume = re.sub('\\s+', ' ', resume).strip()\n",
|
509 |
+
"\n",
|
510 |
+
" # Tokenize the resume\n",
|
511 |
+
" tokens = nltk.word_tokenize(resume)\n",
|
512 |
+
"\n",
|
513 |
+
" # Remove stopwords\n",
|
514 |
+
" stop_words = set(stopwords.words('english'))\n",
|
515 |
+
" tokens = [token for token in tokens if token.lower() not in stop_words]\n",
|
516 |
+
"\n",
|
517 |
+
" # Join the tokens back into a sentence\n",
|
518 |
+
" preprocessed_resume = ' '.join(tokens)\n",
|
519 |
+
"\n",
|
520 |
+
" return preprocessed_resume\n",
|
521 |
+
" else:\n",
|
522 |
+
" return ''\n",
|
523 |
+
"# Applying the cleaning function to a Datasets\n",
|
524 |
+
"resumes['Resumes'] = resumes['Resumes'].apply(lambda x: clean_resume(x))"
|
525 |
+
],
|
526 |
+
"metadata": {
|
527 |
+
"id": "TWyPQ63w51kN"
|
528 |
+
},
|
529 |
+
"execution_count": 30,
|
530 |
+
"outputs": []
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"cell_type": "code",
|
534 |
+
"source": [
|
535 |
+
"import pandas as pd\n",
|
536 |
+
"from transformers import AutoTokenizer, AutoModelForMaskedLM, AdamW\n",
|
537 |
+
"import torch\n",
|
538 |
+
"from torch.utils.data import DataLoader, TensorDataset\n",
|
539 |
+
"from tqdm import tqdm\n",
|
540 |
+
"\n",
|
541 |
+
"# Load the pre-trained model\n",
|
542 |
+
"mpnet = \"sentence-transformers/all-mpnet-base-v2\"\n",
|
543 |
+
"tokenizer = AutoTokenizer.from_pretrained(mpnet)\n",
|
544 |
+
"pretrained_model = AutoModelForMaskedLM.from_pretrained(mpnet)\n",
|
545 |
+
"\n",
|
546 |
+
"# Assuming 'resumes' is a DataFrame with a column named 'Resumes'\n",
|
547 |
+
"texts = resumes['Resumes'].tolist()\n",
|
548 |
+
"\n",
|
549 |
+
"# Tokenize and encode the unlabeled data\n",
|
550 |
+
"encodings = tokenizer(texts, padding=True, truncation = True, return_tensors='pt')\n",
|
551 |
+
"\n",
|
552 |
+
"# Create a TensorDataset\n",
|
553 |
+
"dataset = TensorDataset(encodings['input_ids'], encodings['attention_mask'])\n",
|
554 |
+
"\n",
|
555 |
+
"# Move the model to the appropriate device (CPU or GPU)\n",
|
556 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
557 |
+
"pretrained_model.to(device)\n",
|
558 |
+
"\n",
|
559 |
+
"# Initialize the optimizer\n",
|
560 |
+
"optimizer = AdamW(pretrained_model.parameters(), lr=2e-5)\n",
|
561 |
+
"\n",
|
562 |
+
"batch_size = 8\n",
|
563 |
+
"epochs = 3\n",
|
564 |
+
"import math\n",
|
565 |
+
"\n",
|
566 |
+
"# Experiment with different chunk sizes\n",
|
567 |
+
"chunk_sizes_to_try = [200] # Can add more sizes later\n",
|
568 |
+
"\n",
|
569 |
+
"for chunk_size in chunk_sizes_to_try:\n",
|
570 |
+
" for epoch in range(epochs):\n",
|
571 |
+
" tqdm_dataloader = tqdm(DataLoader(dataset, batch_size=batch_size, shuffle=True), desc=f'Epoch {epoch + 1}/{epochs}')\n",
|
572 |
+
"\n",
|
573 |
+
" pretrained_model.train()\n",
|
574 |
+
" for batch in tqdm_dataloader:\n",
|
575 |
+
" input_ids, attention_mask = batch\n",
|
576 |
+
" input_ids, attention_mask = input_ids.to(device), attention_mask.to(device)\n",
|
577 |
+
"\n",
|
578 |
+
" # Calculate number of chunks for current batch\n",
|
579 |
+
" sequence_length = input_ids.size(1) # Get actual sequence length\n",
|
580 |
+
" num_chunks = math.ceil(sequence_length / chunk_size)\n",
|
581 |
+
"\n",
|
582 |
+
" for i in range(num_chunks):\n",
|
583 |
+
" start_idx = i * chunk_size\n",
|
584 |
+
" end_idx = min((i + 1) * chunk_size, sequence_length) # Handle final chunk\n",
|
585 |
+
"\n",
|
586 |
+
" # Extract chunk data\n",
|
587 |
+
" input_ids_chunk = input_ids[:, start_idx:end_idx]\n",
|
588 |
+
" attention_mask_chunk = attention_mask[:, start_idx:end_idx]\n",
|
589 |
+
"\n",
|
590 |
+
" # Forward pass\n",
|
591 |
+
" outputs = pretrained_model(\n",
|
592 |
+
" input_ids_chunk, attention_mask=attention_mask_chunk, labels=input_ids_chunk.reshape(-1)\n",
|
593 |
+
" )\n",
|
594 |
+
"\n",
|
595 |
+
" # Calculate loss\n",
|
596 |
+
" loss = outputs.loss\n",
|
597 |
+
"\n",
|
598 |
+
" # Backward pass and optimization\n",
|
599 |
+
" optimizer.zero_grad()\n",
|
600 |
+
" loss.backward()\n",
|
601 |
+
" optimizer.step()\n",
|
602 |
+
"\n",
|
603 |
+
" # Update progress bar\n",
|
604 |
+
" tqdm_dataloader.set_postfix({'Loss': loss.item(), 'Chunk Size': chunk_size})"
|
605 |
+
],
|
606 |
+
"metadata": {
|
607 |
+
"colab": {
|
608 |
+
"base_uri": "https://localhost:8080/"
|
609 |
+
},
|
610 |
+
"id": "kypmxXhz4ybO",
|
611 |
+
"outputId": "a142f965-498a-4f33-ffbb-028f88f27d51"
|
612 |
+
},
|
613 |
+
"execution_count": 43,
|
614 |
+
"outputs": [
|
615 |
+
{
|
616 |
+
"output_type": "stream",
|
617 |
+
"name": "stderr",
|
618 |
+
"text": [
|
619 |
+
"Some weights of the model checkpoint at sentence-transformers/all-mpnet-base-v2 were not used when initializing MPNetForMaskedLM: ['pooler.dense.weight', 'pooler.dense.bias']\n",
|
620 |
+
"- This IS expected if you are initializing MPNetForMaskedLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
621 |
+
"- This IS NOT expected if you are initializing MPNetForMaskedLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
622 |
+
"Some weights of MPNetForMaskedLM were not initialized from the model checkpoint at sentence-transformers/all-mpnet-base-v2 and are newly initialized: ['lm_head.dense.weight', 'lm_head.bias', 'lm_head.decoder.bias', 'lm_head.layer_norm.weight', 'lm_head.layer_norm.bias', 'lm_head.dense.bias']\n",
|
623 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
|
624 |
+
"/usr/local/lib/python3.10/dist-packages/transformers/optimization.py:411: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
|
625 |
+
" warnings.warn(\n",
|
626 |
+
"Epoch 1/3: 100%|██████████| 750/750 [11:46<00:00, 1.06it/s, Loss=0.057, Chunk Size=200]\n",
|
627 |
+
"Epoch 2/3: 100%|██████████| 750/750 [11:47<00:00, 1.06it/s, Loss=0.0571, Chunk Size=200]\n",
|
628 |
+
"Epoch 3/3: 100%|██████████| 750/750 [11:47<00:00, 1.06it/s, Loss=0.0464, Chunk Size=200]\n"
|
629 |
+
]
|
630 |
+
}
|
631 |
+
]
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"cell_type": "code",
|
635 |
+
"source": [
|
636 |
+
"# Save the fine-tuned model\n",
|
637 |
+
"pretrained_model.save_pretrained('fine_tuned_mpnet')\n",
|
638 |
+
"tokenizer.save_pretrained('fine_tuned_mpnet')"
|
639 |
+
],
|
640 |
+
"metadata": {
|
641 |
+
"colab": {
|
642 |
+
"base_uri": "https://localhost:8080/"
|
643 |
+
},
|
644 |
+
"id": "U-mZPfa8Sipl",
|
645 |
+
"outputId": "fc93a178-aaf4-415b-f8e2-bba93a832052"
|
646 |
+
},
|
647 |
+
"execution_count": 44,
|
648 |
+
"outputs": [
|
649 |
+
{
|
650 |
+
"output_type": "execute_result",
|
651 |
+
"data": {
|
652 |
+
"text/plain": [
|
653 |
+
"('fine_tuned_mpnet/tokenizer_config.json',\n",
|
654 |
+
" 'fine_tuned_mpnet/special_tokens_map.json',\n",
|
655 |
+
" 'fine_tuned_mpnet/vocab.txt',\n",
|
656 |
+
" 'fine_tuned_mpnet/added_tokens.json',\n",
|
657 |
+
" 'fine_tuned_mpnet/tokenizer.json')"
|
658 |
+
]
|
659 |
+
},
|
660 |
+
"metadata": {},
|
661 |
+
"execution_count": 44
|
662 |
+
}
|
663 |
+
]
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"cell_type": "code",
|
667 |
+
"source": [],
|
668 |
+
"metadata": {
|
669 |
+
"id": "fnD7hsloTA1i"
|
670 |
+
},
|
671 |
+
"execution_count": null,
|
672 |
+
"outputs": []
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"cell_type": "code",
|
676 |
+
"source": [],
|
677 |
+
"metadata": {
|
678 |
+
"id": "LEUEojrfTBB0"
|
679 |
+
},
|
680 |
+
"execution_count": null,
|
681 |
+
"outputs": []
|
682 |
+
}
|
683 |
+
]
|
684 |
+
}
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/all-mpnet-base-v2",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetForMaskedLM"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "mpnet",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"relative_attention_num_buckets": 32,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.35.2",
|
23 |
+
"vocab_size": 30527
|
24 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae792036540d52db6ef280faae80757c247ef848bc4ae66ff8ad5effc4ad232a
|
3 |
+
size 438097372
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": true,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"104": {
|
36 |
+
"content": "[UNK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"30526": {
|
44 |
+
"content": "<mask>",
|
45 |
+
"lstrip": true,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
}
|
51 |
+
},
|
52 |
+
"bos_token": "<s>",
|
53 |
+
"clean_up_tokenization_spaces": true,
|
54 |
+
"cls_token": "<s>",
|
55 |
+
"do_lower_case": true,
|
56 |
+
"eos_token": "</s>",
|
57 |
+
"mask_token": "<mask>",
|
58 |
+
"max_length": 128,
|
59 |
+
"model_max_length": 512,
|
60 |
+
"pad_to_multiple_of": null,
|
61 |
+
"pad_token": "<pad>",
|
62 |
+
"pad_token_type_id": 0,
|
63 |
+
"padding_side": "right",
|
64 |
+
"sep_token": "</s>",
|
65 |
+
"stride": 0,
|
66 |
+
"strip_accents": null,
|
67 |
+
"tokenize_chinese_chars": true,
|
68 |
+
"tokenizer_class": "MPNetTokenizer",
|
69 |
+
"truncation_side": "right",
|
70 |
+
"truncation_strategy": "longest_first",
|
71 |
+
"unk_token": "[UNK]"
|
72 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|