|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
|
|
import numpy as np |
|
import triton_python_backend_utils as pb_utils |
|
from transformers import AutoTokenizer |
|
|
|
|
|
class TritonPythonModel: |
|
"""Your Python model must use the same class name. Every Python model |
|
that is created must have "TritonPythonModel" as the class name. |
|
""" |
|
|
|
def initialize(self, args): |
|
"""`initialize` is called only once when the model is being loaded. |
|
Implementing `initialize` function is optional. This function allows |
|
the model to initialize any state associated with this model. |
|
Parameters |
|
---------- |
|
args : dict |
|
Both keys and values are strings. The dictionary keys and values are: |
|
* model_config: A JSON string containing the model configuration |
|
* model_instance_kind: A string containing model instance kind |
|
* model_instance_device_id: A string containing model instance device ID |
|
* model_repository: Model repository path |
|
* model_version: Model version |
|
* model_name: Model name |
|
""" |
|
|
|
model_config = json.loads(args['model_config']) |
|
tokenizer_dir = model_config['parameters']['tokenizer_dir'][ |
|
'string_value'] |
|
|
|
skip_special_tokens = model_config['parameters'].get( |
|
'skip_special_tokens') |
|
if skip_special_tokens is not None: |
|
skip_special_tokens_str = skip_special_tokens[ |
|
'string_value'].lower() |
|
if skip_special_tokens_str in [ |
|
'true', 'false', '1', '0', 't', 'f', 'y', 'n', 'yes', 'no' |
|
]: |
|
self.skip_special_tokens = skip_special_tokens_str in [ |
|
'true', '1', 't', 'y', 'yes' |
|
] |
|
else: |
|
print( |
|
f"[TensorRT-LLM][WARNING] Don't setup 'skip_special_tokens' correctly (set value is {skip_special_tokens['string_value']}). Set it as True by default." |
|
) |
|
self.skip_special_tokens = True |
|
else: |
|
print( |
|
f"[TensorRT-LLM][WARNING] Don't setup 'skip_special_tokens'. Set it as True by default." |
|
) |
|
self.skip_special_tokens = True |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir, |
|
legacy=False, |
|
padding_side='left', |
|
trust_remote_code=True) |
|
if not self.tokenizer.pad_token: |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
|
|
|
|
output_config = pb_utils.get_output_config_by_name( |
|
model_config, "OUTPUT") |
|
|
|
|
|
self.output_dtype = pb_utils.triton_string_to_numpy( |
|
output_config['data_type']) |
|
|
|
def execute(self, requests): |
|
"""`execute` must be implemented in every Python model. `execute` |
|
function receives a list of pb_utils.InferenceRequest as the only |
|
argument. This function is called when an inference is requested |
|
for this model. Depending on the batching configuration (e.g. Dynamic |
|
Batching) used, `requests` may contain multiple requests. Every |
|
Python model, must create one pb_utils.InferenceResponse for every |
|
pb_utils.InferenceRequest in `requests`. If there is an error, you can |
|
set the error argument when creating a pb_utils.InferenceResponse. |
|
Parameters |
|
---------- |
|
requests : list |
|
A list of pb_utils.InferenceRequest |
|
Returns |
|
------- |
|
list |
|
A list of pb_utils.InferenceResponse. The length of this list must |
|
be the same as `requests` |
|
""" |
|
|
|
responses = [] |
|
|
|
|
|
|
|
for idx, request in enumerate(requests): |
|
|
|
tokens_batch = pb_utils.get_input_tensor_by_name( |
|
request, 'TOKENS_BATCH').as_numpy() |
|
|
|
|
|
sequence_lengths = pb_utils.get_input_tensor_by_name( |
|
request, 'SEQUENCE_LENGTH').as_numpy() |
|
|
|
|
|
cum_log_probs = pb_utils.get_input_tensor_by_name( |
|
request, 'CUM_LOG_PROBS') |
|
|
|
|
|
output_log_probs = pb_utils.get_input_tensor_by_name( |
|
request, 'OUTPUT_LOG_PROBS') |
|
|
|
|
|
context_logits = pb_utils.get_input_tensor_by_name( |
|
request, 'CONTEXT_LOGITS') |
|
|
|
|
|
generation_logits = pb_utils.get_input_tensor_by_name( |
|
request, 'GENERATION_LOGITS') |
|
|
|
|
|
|
|
|
|
|
|
|
|
outputs = self._postprocessing(tokens_batch, sequence_lengths) |
|
|
|
|
|
|
|
output_tensor = pb_utils.Tensor( |
|
'OUTPUT', |
|
np.array(outputs).astype(self.output_dtype)) |
|
|
|
outputs = [] |
|
outputs.append(output_tensor) |
|
|
|
if cum_log_probs: |
|
out_cum_log_probs = pb_utils.Tensor('OUT_CUM_LOG_PROBS', |
|
cum_log_probs.as_numpy()) |
|
outputs.append(out_cum_log_probs) |
|
else: |
|
out_cum_log_probs = pb_utils.Tensor( |
|
'OUT_CUM_LOG_PROBS', np.array([[0.0]], dtype=np.float32)) |
|
outputs.append(out_cum_log_probs) |
|
|
|
if output_log_probs: |
|
out_output_log_probs = pb_utils.Tensor( |
|
'OUT_OUTPUT_LOG_PROBS', output_log_probs.as_numpy()) |
|
outputs.append(out_output_log_probs) |
|
else: |
|
out_output_log_probs = pb_utils.Tensor( |
|
'OUT_OUTPUT_LOG_PROBS', |
|
np.array([[[0.0]]], dtype=np.float32)) |
|
outputs.append(out_output_log_probs) |
|
|
|
if context_logits: |
|
out_context_logits = pb_utils.Tensor('OUT_CONTEXT_LOGITS', |
|
context_logits.as_numpy()) |
|
outputs.append(out_context_logits) |
|
else: |
|
out_context_logits = pb_utils.Tensor( |
|
'OUT_CONTEXT_LOGITS', np.array([[[0.0]]], |
|
dtype=np.float32)) |
|
outputs.append(out_context_logits) |
|
|
|
if generation_logits: |
|
out_generation_logits = pb_utils.Tensor( |
|
'OUT_GENERATION_LOGITS', generation_logits.as_numpy()) |
|
outputs.append(out_generation_logits) |
|
else: |
|
out_generation_logits = pb_utils.Tensor( |
|
'OUT_GENERATION_LOGITS', |
|
np.array([[[[0.0]]]], dtype=np.float32)) |
|
outputs.append(out_generation_logits) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inference_response = pb_utils.InferenceResponse( |
|
output_tensors=outputs) |
|
responses.append(inference_response) |
|
|
|
|
|
|
|
return responses |
|
|
|
def finalize(self): |
|
"""`finalize` is called only once when the model is being unloaded. |
|
Implementing `finalize` function is optional. This function allows |
|
the model to perform any necessary clean ups before exit. |
|
""" |
|
print('Cleaning up...') |
|
|
|
def _postprocessing(self, tokens_batch, sequence_lengths): |
|
outputs = [] |
|
for batch_idx, beam_tokens in enumerate(tokens_batch): |
|
for beam_idx, tokens in enumerate(beam_tokens): |
|
seq_len = sequence_lengths[batch_idx][beam_idx] |
|
output = self.tokenizer.decode( |
|
tokens[:seq_len], |
|
skip_special_tokens=self.skip_special_tokens) |
|
outputs.append(output.encode('utf8')) |
|
return outputs |
|
|