File size: 1,919 Bytes
65067c6
eda2019
 
65067c6
 
 
 
 
 
 
 
 
 
 
 
 
 
8e161f7
65067c6
eda2019
 
65067c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eda2019
 
 
 
 
65067c6
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-large-v3-turbo-ft-cv-cy-train-all-plus-other-with-excluded
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-large-v3-turbo-ft-cv-cy-train-all-plus-other-with-excluded

This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the DewiBrynJones/commonvoice_18_0_cy train_all+other_with_excluded main dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3134
- Wer: 0.1746

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.2147        | 1.4144 | 1000 | 0.3066          | 0.2349 |
| 0.0989        | 2.8289 | 2000 | 0.2775          | 0.2072 |
| 0.0295        | 4.2433 | 3000 | 0.2935          | 0.1919 |
| 0.0109        | 5.6577 | 4000 | 0.3011          | 0.1828 |
| 0.0016        | 7.0721 | 5000 | 0.3134          | 0.1746 |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1