|
--- |
|
license: mit |
|
base_model: indobenchmark/indobert-base-p2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: fitur_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# fitur_model |
|
|
|
This model is a fine-tuned version of [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3853 |
|
- Accuracy: 0.7857 |
|
- F1: 0.6904 |
|
- Precision: 0.7095 |
|
- Recall: 0.6786 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| No log | 0.54 | 50 | 0.6229 | 0.7582 | 0.6537 | 0.6671 | 0.6454 | |
|
| No log | 1.09 | 100 | 0.6750 | 0.7747 | 0.6557 | 0.6912 | 0.6414 | |
|
| No log | 1.63 | 150 | 0.5936 | 0.7802 | 0.7242 | 0.7137 | 0.7421 | |
|
| No log | 2.17 | 200 | 0.7087 | 0.7912 | 0.7312 | 0.7232 | 0.7419 | |
|
| No log | 2.72 | 250 | 0.9279 | 0.7802 | 0.6796 | 0.7007 | 0.6675 | |
|
| No log | 3.26 | 300 | 1.0408 | 0.7747 | 0.6853 | 0.6940 | 0.6788 | |
|
| No log | 3.8 | 350 | 1.2506 | 0.7857 | 0.7007 | 0.7100 | 0.6935 | |
|
| No log | 4.35 | 400 | 1.4011 | 0.7802 | 0.6796 | 0.7007 | 0.6675 | |
|
| No log | 4.89 | 450 | 1.3770 | 0.7857 | 0.6904 | 0.7095 | 0.6786 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|