File size: 15,898 Bytes
84aab8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5b54f2ec10>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc_data object at 0x7f5b54f2f360>"
    },
    "verbose": 1,
    "policy_kwargs": {
        ":type:": "<class 'dict'>",
        ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
        "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
        "optimizer_kwargs": {
            "alpha": 0.99,
            "eps": 1e-05,
            "weight_decay": 0
        }
    },
    "observation_space": {
        ":type:": "<class 'gym.spaces.dict.Dict'>",
        ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
        "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
        "_shape": null,
        "dtype": null,
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
        "dtype": "float32",
        "_shape": [
            3
        ],
        "low": "[-1. -1. -1.]",
        "high": "[1. 1. 1.]",
        "bounded_below": "[ True  True  True]",
        "bounded_above": "[ True  True  True]",
        "_np_random": null
    },
    "n_envs": 4,
    "num_timesteps": 1500000,
    "_total_timesteps": 1500000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1674038570507078385,
    "learning_rate": 0.0007,
    "tensorboard_log": null,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "_last_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAUATlPuV0jj2EFBQ/UATlPuV0jj2EFBQ/UATlPuV0jj2EFBQ/UATlPuV0jj2EFBQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAC0DNv/Klwb8KRai9M+bTP02Npb8Z92y/j2XYP9rvNr9pqoI/qNzYv/fQSb8HcgI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABQBOU+5XSOPYQUFD9cI8k8QSIZvL8s0DxQBOU+5XSOPYQUFD9cI8k8QSIZvL8s0DxQBOU+5XSOPYQUFD9cI8k8QSIZvL8s0DxQBOU+5XSOPYQUFD9cI8k8QSIZvL8s0DyUaA5LBEsGhpRoEnSUUpR1Lg==",
        "achieved_goal": "[[0.44729853 0.0695589  0.57843804]\n [0.44729853 0.0695589  0.57843804]\n [0.44729853 0.0695589  0.57843804]\n [0.44729853 0.0695589  0.57843804]]",
        "desired_goal": "[[-1.6035169  -1.5128767  -0.08216293]\n [ 1.6554626  -1.2933747  -0.9256454 ]\n [ 1.6905993  -0.71459734  1.0208255 ]\n [-1.6942339  -0.7883448   0.5095524 ]]",
        "observation": "[[ 0.44729853  0.0695589   0.57843804  0.02455299 -0.00934655  0.02541196]\n [ 0.44729853  0.0695589   0.57843804  0.02455299 -0.00934655  0.02541196]\n [ 0.44729853  0.0695589   0.57843804  0.02455299 -0.00934655  0.02541196]\n [ 0.44729853  0.0695589   0.57843804  0.02455299 -0.00934655  0.02541196]]"
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAFXUNvrsZer3hhWo+EUe0PQntmzzuf1Y+jeWqPSmz+z30RfE6gAxjvNgvhLzWN/E9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
        "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]",
        "desired_goal": "[[-0.13814195 -0.06105969  0.22902633]\n [ 0.08802617  0.01903393  0.20947239]\n [ 0.08344565  0.12290031  0.00184077]\n [-0.01385796 -0.01613609  0.11778228]]",
        "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"
    },
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": 0.0,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2qoksg9CLcCUhpRSlIwBbJRLMowBdJRHQK1uc3solUp1fZQoaAZoCWgPQwirr64K1JITwJSGlFKUaBVLMmgWR0CtbigfdRBNdX2UKGgGaAloD0MIfeasTzlWKsCUhpRSlGgVSzJoFkdArW3t6sySFHV9lChoBmgJaA9DCHOh8q/lTTLAlIaUUpRoFUsyaBZHQK1tsGlANXp1fZQoaAZoCWgPQwj5SEp6GLoiwJSGlFKUaBVLMmgWR0Ctb15dOZb7dX2UKGgGaAloD0MIXByVm6jlK8CUhpRSlGgVSzJoFkdArW8TGrCFbnV9lChoBmgJaA9DCLrcYKjDWhzAlIaUUpRoFUsyaBZHQK1u2LbYbsF1fZQoaAZoCWgPQwjHuU24V34vwJSGlFKUaBVLMmgWR0Ctbptbs4T9dX2UKGgGaAloD0MIMV2I1R+BJ8CUhpRSlGgVSzJoFkdArXBLJ+2E03V9lChoBmgJaA9DCE9bI4JxIBjAlIaUUpRoFUsyaBZHQK1v/7UG3Wp1fZQoaAZoCWgPQwidSDDVzMoRwJSGlFKUaBVLMmgWR0Ctb8YNI9TxdX2UKGgGaAloD0MIKNTTR+AHOMCUhpRSlGgVSzJoFkdArW+I2Kl54XV9lChoBmgJaA9DCFVrYRbadTHAlIaUUpRoFUsyaBZHQK1xNdKNAC51fZQoaAZoCWgPQwhm9Q63Q9MrwJSGlFKUaBVLMmgWR0CtcOq814xDdX2UKGgGaAloD0MINq0UArn0LMCUhpRSlGgVSzJoFkdArXCwe1a4c3V9lChoBmgJaA9DCO/FF+3xrjrAlIaUUpRoFUsyaBZHQK1wc1gpjMF1fZQoaAZoCWgPQwgZ5ZmXw54nwJSGlFKUaBVLMmgWR0CtchXTNMXadX2UKGgGaAloD0MICM2ueysSJcCUhpRSlGgVSzJoFkdArXHKdFvyb3V9lChoBmgJaA9DCKgY529CQSjAlIaUUpRoFUsyaBZHQK1xkFyq+8J1fZQoaAZoCWgPQwins5PBUYIcwJSGlFKUaBVLMmgWR0CtcVLl/6O6dX2UKGgGaAloD0MIDtlAutgMKcCUhpRSlGgVSzJoFkdArXMRlvqC6HV9lChoBmgJaA9DCAUXK2owRSfAlIaUUpRoFUsyaBZHQK1yxjd56dF1fZQoaAZoCWgPQwiop4/AHz4owJSGlFKUaBVLMmgWR0Ctcov99+gEdX2UKGgGaAloD0MI9iNFZFg5OsCUhpRSlGgVSzJoFkdArXJOznied3V9lChoBmgJaA9DCBSTN8DMPybAlIaUUpRoFUsyaBZHQK1z+Ttb9qF1fZQoaAZoCWgPQwh2Fr1TAZcQwJSGlFKUaBVLMmgWR0Ctc63t0FKTdX2UKGgGaAloD0MI/n4xW7LiMMCUhpRSlGgVSzJoFkdArXNzzf779HV9lChoBmgJaA9DCHdIMUCi8S3AlIaUUpRoFUsyaBZHQK1zNplBhQZ1fZQoaAZoCWgPQwiOsn4zMSUiwJSGlFKUaBVLMmgWR0CtdOJHAh0RdX2UKGgGaAloD0MIDaX2ItreMsCUhpRSlGgVSzJoFkdArXSW6Ae7tnV9lChoBmgJaA9DCGB15EhnICbAlIaUUpRoFUsyaBZHQK10XMmnfl91fZQoaAZoCWgPQwgB2lazziAjwJSGlFKUaBVLMmgWR0CtdB/SpiqidX2UKGgGaAloD0MIUwlP6PWvMMCUhpRSlGgVSzJoFkdArXXFPYWcjXV9lChoBmgJaA9DCAYujzUj0xjAlIaUUpRoFUsyaBZHQK11edsi0OV1fZQoaAZoCWgPQwiL+iR32DwmwJSGlFKUaBVLMmgWR0CtdT+UpuuSdX2UKGgGaAloD0MIhUIEHEJ9KcCUhpRSlGgVSzJoFkdArXUCKxcE/3V9lChoBmgJaA9DCNtSB3k9KC3AlIaUUpRoFUsyaBZHQK12qHzpX6t1fZQoaAZoCWgPQwgV4pF4eUomwJSGlFKUaBVLMmgWR0Ctdl05+6RRdX2UKGgGaAloD0MIILQevkyEIMCUhpRSlGgVSzJoFkdArXYjCaZx73V9lChoBmgJaA9DCLsO1ZRkfRvAlIaUUpRoFUsyaBZHQK115Y+Sr5t1fZQoaAZoCWgPQwgx0LUvoJclwJSGlFKUaBVLMmgWR0Ctd4oZqEeydX2UKGgGaAloD0MIU7MHWoERJMCUhpRSlGgVSzJoFkdArXc+vOhTO3V9lChoBmgJaA9DCML3/gbtFRfAlIaUUpRoFUsyaBZHQK13BJ2dNFl1fZQoaAZoCWgPQwgBaf8DrPUhwJSGlFKUaBVLMmgWR0Ctdsc7p3X7dX2UKGgGaAloD0MIEt4ehID0KsCUhpRSlGgVSzJoFkdArXh6b4Ju23V9lChoBmgJaA9DCPse9dcrVCrAlIaUUpRoFUsyaBZHQK14LyyUs4F1fZQoaAZoCWgPQwg4MSQnE7MywJSGlFKUaBVLMmgWR0Ctd/UjcEeRdX2UKGgGaAloD0MIeozyzMvxGcCUhpRSlGgVSzJoFkdArXe3xYq5LHV9lChoBmgJaA9DCPhrskY9xCTAlIaUUpRoFUsyaBZHQK15ajXWe6J1fZQoaAZoCWgPQwhQ+62dKFktwJSGlFKUaBVLMmgWR0CteR75VOsUdX2UKGgGaAloD0MIN6eSAaB6I8CUhpRSlGgVSzJoFkdArXjkwvg3tXV9lChoBmgJaA9DCH5Uw35PxDfAlIaUUpRoFUsyaBZHQK14p5Jsfq51fZQoaAZoCWgPQwh2qRH6mVoqwJSGlFKUaBVLMmgWR0CtelZD7ZWadX2UKGgGaAloD0MIaFw4EJLlHsCUhpRSlGgVSzJoFkdArXoLPOY6XHV9lChoBmgJaA9DCO25TE2Cfy7AlIaUUpRoFUsyaBZHQK150S+QEIR1fZQoaAZoCWgPQwhpb/CFySwiwJSGlFKUaBVLMmgWR0CteZOrQw9JdX2UKGgGaAloD0MI5SuBlNgFHsCUhpRSlGgVSzJoFkdArXtF5t3wC3V9lChoBmgJaA9DCH9PrFPlWx7AlIaUUpRoFUsyaBZHQK16+oVEd/91fZQoaAZoCWgPQwj1gk9z8gIlwJSGlFKUaBVLMmgWR0CtesBbwBo3dX2UKGgGaAloD0MIZsBZSpYbIsCUhpRSlGgVSzJoFkdArXqC6Ymb9nV9lChoBmgJaA9DCGL1RxgGdDzAlIaUUpRoFUsyaBZHQK18TdcjZ+R1fZQoaAZoCWgPQwhRacTMPq8SwJSGlFKUaBVLMmgWR0CtfAKYZ2pydX2UKGgGaAloD0MI9fI7TWaMFcCUhpRSlGgVSzJoFkdArXvIRdyDI3V9lChoBmgJaA9DCH6K48Cr8TXAlIaUUpRoFUsyaBZHQK17ixJul411fZQoaAZoCWgPQwglICbhQi4hwJSGlFKUaBVLMmgWR0CtfTwpvxYrdX2UKGgGaAloD0MIzt+EQgS0J8CUhpRSlGgVSzJoFkdArXzw77sOXnV9lChoBmgJaA9DCA4tsp3vjyHAlIaUUpRoFUsyaBZHQK18tsCT2WZ1fZQoaAZoCWgPQwi3fCQlPTwawJSGlFKUaBVLMmgWR0CtfHkzfrKOdX2UKGgGaAloD0MIq5MzFHfcFMCUhpRSlGgVSzJoFkdArX4zfcer/HV9lChoBmgJaA9DCHbfMTz2UybAlIaUUpRoFUsyaBZHQK196Cjk+5h1fZQoaAZoCWgPQwiqZtZSQPoiwJSGlFKUaBVLMmgWR0Ctfa3rt3OfdX2UKGgGaAloD0MI7URJSKTZOMCUhpRSlGgVSzJoFkdArX1wqqfe13V9lChoBmgJaA9DCFQCYhIurDnAlIaUUpRoFUsyaBZHQK1/L+Jgssh1fZQoaAZoCWgPQwgfMXpuoasVwJSGlFKUaBVLMmgWR0CtfuSh8IAwdX2UKGgGaAloD0MIrcPRVbpTLcCUhpRSlGgVSzJoFkdArX6qdpZfUnV9lChoBmgJaA9DCKuuQzUl0STAlIaUUpRoFUsyaBZHQK1+bPszEaV1fZQoaAZoCWgPQwiamC7E6k8VwJSGlFKUaBVLMmgWR0CtgCNNzr/sdX2UKGgGaAloD0MIEXNJ1XYTJMCUhpRSlGgVSzJoFkdArX/YP9UCJXV9lChoBmgJaA9DCKCkwAKYPjTAlIaUUpRoFUsyaBZHQK1/nikwevJ1fZQoaAZoCWgPQwicoiO5/MciwJSGlFKUaBVLMmgWR0Ctf2EMTewcdX2UKGgGaAloD0MIeLZHb7h3K8CUhpRSlGgVSzJoFkdArYEXzasZHnV9lChoBmgJaA9DCHe9NEWAEx7AlIaUUpRoFUsyaBZHQK2AzGIbfgt1fZQoaAZoCWgPQwjlDpvIzKU8wJSGlFKUaBVLMmgWR0CtgJL39JjEdX2UKGgGaAloD0MITGw+rg0tKMCUhpRSlGgVSzJoFkdArYBVrqMWGnV9lChoBmgJaA9DCHst6L0xYDLAlIaUUpRoFUsyaBZHQK2CE2v0ROF1fZQoaAZoCWgPQwgawFsgQQkjwJSGlFKUaBVLMmgWR0CtgcgQHzH0dX2UKGgGaAloD0MIaOkKthGPF8CUhpRSlGgVSzJoFkdArYGN12aDw3V9lChoBmgJaA9DCBiUaTS5jDvAlIaUUpRoFUsyaBZHQK2BUJeE7GN1fZQoaAZoCWgPQwj5SEp6GJIiwJSGlFKUaBVLMmgWR0Ctgv8IqsltdX2UKGgGaAloD0MIuAGfH0YQIcCUhpRSlGgVSzJoFkdArYKzzAeq73V9lChoBmgJaA9DCAkZyLPL1ynAlIaUUpRoFUsyaBZHQK2CeaVD8cd1fZQoaAZoCWgPQwibjZWYZ10uwJSGlFKUaBVLMmgWR0Ctgjwr1/UfdX2UKGgGaAloD0MIeEXwv5WkKcCUhpRSlGgVSzJoFkdArYPsjkdWAHV9lChoBmgJaA9DCB/2QgHb/TvAlIaUUpRoFUsyaBZHQK2DoWmgrYp1fZQoaAZoCWgPQwjTLxFvnesxwJSGlFKUaBVLMmgWR0Ctg2cm8dxRdX2UKGgGaAloD0MIi8HDtG/OFcCUhpRSlGgVSzJoFkdArYMqREF4cHV9lChoBmgJaA9DCBRAMbJkjivAlIaUUpRoFUsyaBZHQK2E4Er5IpZ1fZQoaAZoCWgPQwjgKk8g7MQcwJSGlFKUaBVLMmgWR0CthJTyz5XVdX2UKGgGaAloD0MIJ77aUZzDIMCUhpRSlGgVSzJoFkdArYRavHLidnV9lChoBmgJaA9DCI/k8h/SKznAlIaUUpRoFUsyaBZHQK2EHXjlxOt1ZS4="
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 75000,
    "n_steps": 5,
    "gamma": 0.99,
    "gae_lambda": 1.0,
    "ent_coef": 0.0,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "normalize_advantage": false
}