DianLiI commited on
Commit
d2522ae
·
verified ·
1 Parent(s): 35f782f

Upload model

Browse files
Files changed (4) hide show
  1. README.md +199 -0
  2. config.json +55 -0
  3. model.safetensors +3 -0
  4. modeling_genbio.py +45 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "GenBioModel"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "modeling_genbio.GenBioConfig",
7
+ "AutoModel": "modeling_genbio.GenBioModel"
8
+ },
9
+ "hparams": {
10
+ "_class_path": "genbio_finetune.tasks.SequenceClassification",
11
+ "_instantiator": "lightning.pytorch.cli.instantiate_module",
12
+ "adapter": "genbio_finetune.models.LinearCLSAdapter",
13
+ "backbone": {
14
+ "class_path": "genbio_finetune.models.dummy",
15
+ "init_args": {
16
+ "config_overwrites": null,
17
+ "from_scratch": false,
18
+ "lora_alpha": 32,
19
+ "lora_dropout": 0.1,
20
+ "lora_r": 16,
21
+ "max_length": null,
22
+ "model_init_args": null,
23
+ "save_peft_only": true,
24
+ "use_peft": false
25
+ }
26
+ },
27
+ "batch_size": 128,
28
+ "lr_scheduler": null,
29
+ "n_classes": 2,
30
+ "optimizer": {
31
+ "class_path": "torch.optim.AdamW",
32
+ "init_args": {
33
+ "amsgrad": false,
34
+ "betas": [
35
+ 0.9,
36
+ 0.999
37
+ ],
38
+ "capturable": false,
39
+ "differentiable": false,
40
+ "eps": 1e-08,
41
+ "foreach": null,
42
+ "fused": null,
43
+ "lr": 0.001,
44
+ "maximize": false,
45
+ "weight_decay": 0.01
46
+ }
47
+ },
48
+ "reset_optimizer_states": false,
49
+ "strict_loading": true,
50
+ "use_legacy_adapter": false
51
+ },
52
+ "model_type": "genbio",
53
+ "torch_dtype": "float32",
54
+ "transformers_version": "4.38.0"
55
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b88839655ec839cb2d5fdd95551007d9b7879f66d8b77aade74a3bfa1b0f6c3
3
+ size 18209560
modeling_genbio.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from lightning.pytorch import LightningModule
2
+ from lightning.pytorch.core.saving import _load_state
3
+ from transformers import PreTrainedModel, PretrainedConfig
4
+
5
+
6
+ class GenBioConfig(PretrainedConfig):
7
+ model_type = "genbio"
8
+
9
+ def __init__(self, hparams=None, **kwargs):
10
+ self.hparams = hparams
11
+ super().__init__(**kwargs)
12
+
13
+
14
+ class GenBioModel(PreTrainedModel):
15
+ config_class = GenBioConfig
16
+
17
+ def __init__(self, config: GenBioConfig, genbio_model=None, **kwargs):
18
+ super().__init__(config, **kwargs)
19
+ # if genbio_model is provided, we don't need to initialize it
20
+ if genbio_model is not None:
21
+ self.genbio_model = genbio_model
22
+ return
23
+ # otherwise, initialize the model from hyperparameters
24
+ cls_path = config.hparams["_class_path"]
25
+ module_path, name = cls_path.rsplit(".", 1)
26
+ genbio_cls = getattr(__import__(module_path, fromlist=[name]), name)
27
+ checkpoint = {
28
+ LightningModule.CHECKPOINT_HYPER_PARAMS_KEY: config.hparams,
29
+ "state_dict": {},
30
+ }
31
+ # TODO: _load_state is a private function and it throws a warning for an
32
+ # empty state_dict. We need a fucntion to intialize our model; this
33
+ # is the only choice we have for now.
34
+ self.genbio_model = _load_state(genbio_cls, checkpoint, strict_loading=False)
35
+
36
+ @classmethod
37
+ def from_genbio_model(cls, model: LightningModule):
38
+ return cls(GenBioConfig(hparams=model.hparams), genbio_model=model)
39
+
40
+ def forward(self, *args, **kwargs):
41
+ return self.genbio_model(*args, **kwargs)
42
+
43
+
44
+ GenBioModel.register_for_auto_class("AutoModel")
45
+ GenBioConfig.register_for_auto_class("AutoConfig")