import joblib | |
import numpy as np | |
from sklearn.preprocessing import StandardScaler | |
# Load the model and scaler | |
model = joblib.load("classification_model.joblib") | |
scaler = joblib.load("scaler.pkl") | |
def predict(features): | |
# Scale the features | |
scaled_features = scaler.transform(np.array(features).reshape(1, -1)) | |
prediction = model.predict(scaled_features) | |
return prediction[0] | |
# Sample usage | |
if __name__ == "__main__": | |
# Sample feature data (replace with real data when calling) | |
sample_data = [0.5, 1.2, -0.3, 2.0] | |
result = predict(sample_data) | |
print(f"Prediction: {result}") | |