added all
Browse files- app.py +0 -0
- inference.py +9 -16
app.py
ADDED
File without changes
|
inference.py
CHANGED
@@ -1,20 +1,13 @@
|
|
|
|
|
|
1 |
import joblib
|
2 |
import numpy as np
|
3 |
-
from sklearn.preprocessing import StandardScaler
|
4 |
-
|
5 |
-
# Load the model and scaler
|
6 |
-
model = joblib.load("classification_model.joblib")
|
7 |
-
scaler = joblib.load("scaler.pkl")
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
scaled_features = scaler.transform(np.array(features).reshape(1, -1))
|
12 |
-
prediction = model.predict(scaled_features)
|
13 |
-
return prediction[0]
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
print(f"Prediction: {result}")
|
|
|
1 |
+
# inference.py
|
2 |
+
|
3 |
import joblib
|
4 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
# Load your model (no scaler)
|
7 |
+
model = joblib.load('classification_model.joblib')
|
|
|
|
|
|
|
8 |
|
9 |
+
def predict(input_features):
|
10 |
+
# Make sure the input is a 2D array (batch_size, num_features)
|
11 |
+
input_array = np.array(input_features).reshape(1, -1)
|
12 |
+
prediction = model.predict(input_array)
|
13 |
+
return prediction.tolist() # Return the prediction as a list for easy JSON handling
|
|