Dilipk commited on
Commit
8c5de86
1 Parent(s): 49f19d4

inference added

Browse files
Files changed (2) hide show
  1. README.md +25 -0
  2. inference.py +20 -0
README.md ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Flask Classification Model
2
+
3
+ This is a classification model trained with scikit-learn. The model predicts binary classes based on four input features.
4
+
5
+ ## How to Use
6
+
7
+ 1. Clone the repository.
8
+ 2. Install necessary libraries.
9
+ 3. Run `inference.py` with your input features.
10
+
11
+ Example:
12
+
13
+ ```python
14
+ import joblib
15
+ import numpy as np
16
+
17
+ # Load model and scaler
18
+ model = joblib.load("classification_model.joblib")
19
+ scaler = joblib.load("scaler.pkl")
20
+
21
+ # Make a prediction
22
+ input_features = [0.5, 1.2, -0.3, 2.0]
23
+ scaled_features = scaler.transform(np.array(input_features).reshape(1, -1))
24
+ prediction = model.predict(scaled_features)
25
+ print(prediction)
inference.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import joblib
2
+ import numpy as np
3
+ from sklearn.preprocessing import StandardScaler
4
+
5
+ # Load the model and scaler
6
+ model = joblib.load("classification_model.joblib")
7
+ scaler = joblib.load("scaler.pkl")
8
+
9
+ def predict(features):
10
+ # Scale the features
11
+ scaled_features = scaler.transform(np.array(features).reshape(1, -1))
12
+ prediction = model.predict(scaled_features)
13
+ return prediction[0]
14
+
15
+ # Sample usage
16
+ if __name__ == "__main__":
17
+ # Sample feature data (replace with real data when calling)
18
+ sample_data = [0.5, 1.2, -0.3, 2.0]
19
+ result = predict(sample_data)
20
+ print(f"Prediction: {result}")