import joblib import numpy as np from sklearn.preprocessing import StandardScaler # Load the model and scaler model = joblib.load("classification_model.joblib") scaler = joblib.load("scaler.pkl") def predict(features): # Scale the features scaled_features = scaler.transform(np.array(features).reshape(1, -1)) prediction = model.predict(scaled_features) return prediction[0] # Sample usage if __name__ == "__main__": # Sample feature data (replace with real data when calling) sample_data = [0.5, 1.2, -0.3, 2.0] result = predict(sample_data) print(f"Prediction: {result}")