metadata
license: mit
base_model: severinsimmler/xlm-roberta-longformer-base-16384
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: longformer_pos
results: []
longformer_pos
This model is a fine-tuned version of severinsimmler/xlm-roberta-longformer-base-16384 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6453
- Precision: 0.5508
- Recall: 0.5803
- F1: 0.5651
- Accuracy: 0.8941
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.35 | 50 | 0.7424 | 0.0 | 0.0 | 0.0 | 0.7648 |
No log | 2.7 | 100 | 0.4849 | 0.0415 | 0.0388 | 0.0401 | 0.8160 |
No log | 4.05 | 150 | 0.3986 | 0.0902 | 0.1163 | 0.1016 | 0.8418 |
No log | 5.41 | 200 | 0.3393 | 0.1827 | 0.1880 | 0.1853 | 0.8675 |
No log | 6.76 | 250 | 0.3370 | 0.275 | 0.2132 | 0.2402 | 0.8788 |
No log | 8.11 | 300 | 0.2937 | 0.3605 | 0.5310 | 0.4295 | 0.8864 |
No log | 9.46 | 350 | 0.2793 | 0.4088 | 0.4302 | 0.4193 | 0.8997 |
No log | 10.81 | 400 | 0.2500 | 0.4457 | 0.5969 | 0.5104 | 0.9066 |
No log | 12.16 | 450 | 0.2894 | 0.5031 | 0.6221 | 0.5563 | 0.9107 |
0.3689 | 13.51 | 500 | 0.3678 | 0.5269 | 0.5116 | 0.5192 | 0.9036 |
0.3689 | 14.86 | 550 | 0.3156 | 0.5216 | 0.6085 | 0.5617 | 0.9100 |
0.3689 | 16.22 | 600 | 0.3824 | 0.5551 | 0.5756 | 0.5652 | 0.9115 |
0.3689 | 17.57 | 650 | 0.3347 | 0.4276 | 0.4981 | 0.4602 | 0.9075 |
0.3689 | 18.92 | 700 | 0.3705 | 0.4610 | 0.6880 | 0.5521 | 0.8920 |
0.3689 | 20.27 | 750 | 0.3276 | 0.5447 | 0.6492 | 0.5924 | 0.9100 |
0.3689 | 21.62 | 800 | 0.4603 | 0.5650 | 0.5562 | 0.5605 | 0.9107 |
0.3689 | 22.97 | 850 | 0.3142 | 0.5677 | 0.6260 | 0.5954 | 0.9177 |
0.3689 | 24.32 | 900 | 0.3887 | 0.5747 | 0.6260 | 0.5993 | 0.9164 |
0.3689 | 25.68 | 950 | 0.5906 | 0.4670 | 0.6860 | 0.5557 | 0.8789 |
0.0798 | 27.03 | 1000 | 0.5407 | 0.6218 | 0.5736 | 0.5968 | 0.8989 |
0.0798 | 28.38 | 1050 | 0.4645 | 0.5044 | 0.5504 | 0.5264 | 0.9051 |
0.0798 | 29.73 | 1100 | 0.3217 | 0.5107 | 0.6027 | 0.5529 | 0.9104 |
0.0798 | 31.08 | 1150 | 0.4471 | 0.5523 | 0.6647 | 0.6033 | 0.9055 |
0.0798 | 32.43 | 1200 | 0.4611 | 0.5029 | 0.6725 | 0.5755 | 0.8980 |
0.0798 | 33.78 | 1250 | 0.4495 | 0.5783 | 0.6085 | 0.5930 | 0.9155 |
0.0798 | 35.14 | 1300 | 0.5293 | 0.5727 | 0.6105 | 0.5910 | 0.9128 |
0.0798 | 36.49 | 1350 | 0.4453 | 0.5652 | 0.5795 | 0.5722 | 0.9100 |
0.0798 | 37.84 | 1400 | 0.3912 | 0.5988 | 0.5988 | 0.5988 | 0.9162 |
0.0798 | 39.19 | 1450 | 0.3862 | 0.5917 | 0.6066 | 0.5990 | 0.9182 |
0.0393 | 40.54 | 1500 | 0.4303 | 0.5337 | 0.6744 | 0.5959 | 0.9137 |
0.0393 | 41.89 | 1550 | 0.3846 | 0.5129 | 0.6550 | 0.5753 | 0.9119 |
0.0393 | 43.24 | 1600 | 0.5571 | 0.5735 | 0.6047 | 0.5887 | 0.9124 |
0.0393 | 44.59 | 1650 | 0.4528 | 0.5719 | 0.6395 | 0.6038 | 0.9182 |
0.0393 | 45.95 | 1700 | 0.5202 | 0.6037 | 0.6260 | 0.6147 | 0.9130 |
0.0393 | 47.3 | 1750 | 0.5163 | 0.5743 | 0.5019 | 0.5357 | 0.8990 |
0.0393 | 48.65 | 1800 | 0.3528 | 0.5771 | 0.6531 | 0.6127 | 0.9157 |
0.0393 | 50.0 | 1850 | 0.4441 | 0.5654 | 0.6531 | 0.6061 | 0.9155 |
0.0393 | 51.35 | 1900 | 0.4517 | 0.6262 | 0.6105 | 0.6183 | 0.9151 |
0.0393 | 52.7 | 1950 | 0.4142 | 0.5812 | 0.6105 | 0.5955 | 0.9142 |
0.0315 | 54.05 | 2000 | 0.4539 | 0.5694 | 0.6357 | 0.6007 | 0.9180 |
0.0315 | 55.41 | 2050 | 0.4912 | 0.4107 | 0.5795 | 0.4807 | 0.9097 |
0.0315 | 56.76 | 2100 | 0.4442 | 0.5514 | 0.5194 | 0.5349 | 0.9190 |
0.0315 | 58.11 | 2150 | 0.4871 | 0.5414 | 0.6337 | 0.5839 | 0.9074 |
0.0315 | 59.46 | 2200 | 0.6469 | 0.5937 | 0.5465 | 0.5691 | 0.9072 |
0.0315 | 60.81 | 2250 | 0.4975 | 0.6346 | 0.6395 | 0.6371 | 0.9167 |
0.0315 | 62.16 | 2300 | 0.4800 | 0.6060 | 0.6260 | 0.6158 | 0.9151 |
0.0315 | 63.51 | 2350 | 0.5273 | 0.6047 | 0.5988 | 0.6018 | 0.9137 |
0.0315 | 64.86 | 2400 | 0.4613 | 0.5794 | 0.6221 | 0.6 | 0.9145 |
0.0315 | 66.22 | 2450 | 0.4839 | 0.5996 | 0.6298 | 0.6144 | 0.9189 |
0.0287 | 67.57 | 2500 | 0.4725 | 0.4970 | 0.6415 | 0.5601 | 0.9020 |
0.0287 | 68.92 | 2550 | 0.5888 | 0.6614 | 0.5717 | 0.6133 | 0.8999 |
0.0287 | 70.27 | 2600 | 0.4525 | 0.6021 | 0.5601 | 0.5803 | 0.9086 |
0.0287 | 71.62 | 2650 | 0.4416 | 0.5743 | 0.6066 | 0.5900 | 0.9157 |
0.0287 | 72.97 | 2700 | 0.4290 | 0.5084 | 0.6473 | 0.5695 | 0.8974 |
0.0287 | 74.32 | 2750 | 0.5249 | 0.5778 | 0.5543 | 0.5658 | 0.9103 |
0.0287 | 75.68 | 2800 | 0.5481 | 0.6149 | 0.5601 | 0.5862 | 0.9042 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.2