--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: HO_ASR-Model_KIIT2025 results: [] --- # HO_ASR-Model_KIIT2025 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6844 - Wer: 0.5516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9609 | 2.0 | 250 | 2.8620 | 0.9958 | | 2.3792 | 4.0 | 500 | 1.5657 | 0.8976 | | 0.8142 | 6.0 | 750 | 0.8104 | 0.7383 | | 0.5211 | 8.0 | 1000 | 0.6461 | 0.6508 | | 0.4145 | 10.0 | 1250 | 0.5793 | 0.6257 | | 0.3562 | 12.0 | 1500 | 0.5991 | 0.6315 | | 0.3135 | 14.0 | 1750 | 0.5680 | 0.6295 | | 0.2694 | 16.0 | 2000 | 0.5731 | 0.6139 | | 0.2333 | 18.0 | 2250 | 0.6170 | 0.6482 | | 0.2061 | 20.0 | 2500 | 0.5771 | 0.5852 | | 0.1823 | 22.0 | 2750 | 0.5820 | 0.5776 | | 0.1628 | 24.0 | 3000 | 0.5853 | 0.5793 | | 0.1434 | 26.0 | 3250 | 0.6188 | 0.5776 | | 0.129 | 28.0 | 3500 | 0.6095 | 0.5644 | | 0.1185 | 30.0 | 3750 | 0.6210 | 0.5753 | | 0.1071 | 32.0 | 4000 | 0.6250 | 0.5680 | | 0.097 | 34.0 | 4250 | 0.6207 | 0.5636 | | 0.0901 | 36.0 | 4500 | 0.6477 | 0.5760 | | 0.0833 | 38.0 | 4750 | 0.6510 | 0.5666 | | 0.0758 | 40.0 | 5000 | 0.6519 | 0.5553 | | 0.0693 | 42.0 | 5250 | 0.6641 | 0.5549 | | 0.0637 | 44.0 | 5500 | 0.6648 | 0.5490 | | 0.0591 | 46.0 | 5750 | 0.6809 | 0.5535 | | 0.0585 | 48.0 | 6000 | 0.6786 | 0.5512 | | 0.0555 | 50.0 | 6250 | 0.6844 | 0.5516 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.13.3