File size: 1,872 Bytes
d65dd6a b895845 966c33b b895845 966c33b b895845 ec3519e b895845 966c33b b895845 966c33b b895845 966c33b d65dd6a b895845 d65dd6a b895845 d65dd6a b895845 d65dd6a b895845 d65dd6a b895845 d65dd6a b895845 d65dd6a b895845 d65dd6a b895845 d65dd6a b895845 d65dd6a b895845 d65dd6a b895845 d65dd6a b895845 d65dd6a b895845 d65dd6a b895845 d65dd6a b895845 d65dd6a b895845 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
base_model: facebook/wav2vec2-xls-r-300m
datasets:
- common_voice_16_1
license: apache-2.0
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-large-xls-r-300m-amharic-demo-colab
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: common_voice_16_1
type: common_voice_16_1
config: am
split: test
args: am
metrics:
- type: wer
value: 1.0
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-ahmaric-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_16_1 dataset.
It achieves the following results on the evaluation set:
- Loss: 3.9654
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| 8.3944 | 20.0 | 400 | 3.9654 | 1.0 |
### Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|