jphme commited on
Commit
f82b4a1
1 Parent(s): 69a65ff

Model Card draft

Browse files
Files changed (1) hide show
  1. README.md +128 -0
README.md ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - Open-Orca/SlimOrca-Dedup
4
+ - garage-bAInd/Open-Platypus
5
+ - teknium/openhermes
6
+ - meta-math/MetaMathQA
7
+ - HuggingFaceH4/ultrachat_200k
8
+ - migtissera/Synthia-v1.3
9
+ - THUDM/AgentInstruct
10
+ language:
11
+ - en
12
+ library_name: transformers
13
+ pipeline_tag: text-generation
14
+ license: llama2
15
+ model_creator: DiscoResearch
16
+ model_type: llama
17
+ tags:
18
+ - goliath
19
+ - deutsch
20
+ - llama2
21
+ - discoresearch
22
+ ---
23
+
24
+
25
+ ![EM Logo](https://raw.githubusercontent.com/jphme/jpdus.github.io/master/images/discoresearch.webp)
26
+
27
+ # DiscoLM 120b (Alpha)
28
+
29
+ **DiscoLM 120b (Alpha)** is an experimental 120b model based on [Alpindale´s Goliath 120b](https://huggingface.co/alpindale/goliath-120b), a merge of different Llama2-70b models, and further finetuned on a dataset of some the most popular open-source instruction sets.
30
+ Disco 120b is a [DiscoResearch](https://huggingface.co/DiscoResearch) project and was trained by [Björn Plüster](https://huggingface.co/bjoernp).
31
+
32
+ The model was trained with compute provided by [HessianAI](https://hessian.ai/) - we are very grateful for their support; please check out their wesbite and projects!
33
+
34
+ <img src="https://hessian.ai/wp-content/themes/hessianai/img/hessian-ai-logo.svg" width="120">
35
+
36
+ ## Table of Contents
37
+
38
+ 1. [Download](#download)
39
+ 2. [Benchmarks](#benchmarks)
40
+ 3. [Prompt Format](#prompt-format)
41
+ 4. [Dataset](#dataset)
42
+ 5. [Acknowledgements](#acknowledgements)
43
+ 6. [Contact](#contact)
44
+ 7. [Disclaimer](#disclaimer)
45
+
46
+ ## Download
47
+
48
+ | Huggingface | GPTQ | GGUF | AWQ | *Base Model* |
49
+ |-------|-------|-------|-------|-------|
50
+ | [Link](https://huggingface.co/DiscoResearch/DiscoLM-120b) | soon | soon | soon | [Goliath 120b](https://huggingface.co/alpindale/goliath-120b) |
51
+
52
+ ## Benchmarks
53
+
54
+ This models is still an early Alpha and we can't guarantee that there isn't any contamination.
55
+ However, the average of **72.15** would earn the #2 spot on the HF leaderboard at the time of writing and the highest score for a >70b model yet.
56
+
57
+ | Metric | Value |
58
+ |-----------------------|-------|
59
+ | ARC (25-shot) | 69.54 |
60
+ | HellaSwag (10-shot) | 86.49 |
61
+ | MMLU (5-shot) | 70.32 |
62
+ | TruthfulQA (0-shot) | 61.42 |
63
+ | Winogrande (5-shot) | 83.03 |
64
+ | GSM8k (5-shot) | 68.39 |
65
+ | **Avg.** | **72.15** |
66
+
67
+ We use [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard.
68
+
69
+
70
+
71
+ ## Prompt Format
72
+
73
+ This model follows the ChatML format:
74
+
75
+ ```
76
+ <|im_start|>system
77
+ You are DiscoLM, a helpful assistant.
78
+ <|im_end|>
79
+ <|im_start|>user
80
+ Please tell me possible reasons to call a research collective "Disco Research"<|im_end|>
81
+ <|im_start|>assistant
82
+ ```
83
+
84
+ This formatting is also available via a pre-defined Transformers chat template, which means that lists of messages can be formatted for you with the apply_chat_template() method:
85
+
86
+ ```python
87
+ chat = [
88
+ {"role": "system", "content": "You are DiscoLM, a helpful assistant."},
89
+ {"role": "user", "content": "Please tell me possible reasons to call a research collective Disco Research"}
90
+ ]
91
+ tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
92
+ ```
93
+
94
+ If you use `tokenize=True` and `return_tensors="pt"` instead, then you will get a tokenized and formatted conversation ready to pass to `model.generate()`.
95
+
96
+ ## Dataset
97
+
98
+ The dataset curation for DiscoLM 120b followed a "brute force"/"PoC" approach, as one goal was to see whether a 120b model can "absorb" more instruction data than a 70b model.
99
+
100
+ The following datasets were used for training DiscoLM 120b:
101
+
102
+ * [SlimOrca-Dedup](https://huggingface.co/datasets/Open-Orca/SlimOrca-Dedup)
103
+ * [OpenPlatypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus)
104
+ * [OpenHermes](https://huggingface.co/datasets/teknium/openhermes)
105
+ * [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA)
106
+ * [UltraChat](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
107
+ * [Synthia v.1.3](https://huggingface.co/datasets/migtissera/Synthia-v1.3)
108
+ * [AgentInstruct](https://huggingface.co/datasets/THUDM/AgentInstruct)
109
+
110
+ Many thanks for all dataset providers/curators!
111
+
112
+ ## Contact
113
+
114
+ Best way to reach us is on our [Discord](https://discord.gg/4pAqJP7W).
115
+
116
+ ## Acknowledgements:
117
+
118
+ Disco 120b is a [DiscoResearch](https://huggingface.co/DiscoResearch) project and was trained by [Björn Plüster](https://huggingface.co/bjoernp). [Jan Harries](https://huggingface.co/jphme) helped with technical adivce, logistics and the Model Card and [AutoMeta](https://huggingface.co/Alignment-Lab-AI) also provided helpful technical adivce.
119
+ The model was trained with compute provided by [HessianAI](https://hessian.ai/) - many thanks in particular to [Patrick Schramowski](https://huggingface.co/PSaiml) for his support.
120
+
121
+ We are standing on the shoulders of giants; many thanks in no particular order to [alpindale](https://huggingface.co/alpindale) for Goliath 120b (with important contributions by [Charles Goddard](https://huggingface.co/chargoddard) and [Undi95](https://huggingface.co/Undi95)), [TheBloke](https://huggingface.co/TheBloke) for providing quantized versions, [winglian](https://huggingface.co/winglian) for Axolotl which was used to train the model and the SlimOrca dataset, [garage-bAInd](https://huggingface.co/garage-bAInd), [Teknium](https://huggingface.co/teknium), [Migel Tissera](https://huggingface.co/migtissera), [MetaMath](https://huggingface.co/meta-math) for their great datasets (please contact us if we forgot to mention you here!).
122
+
123
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
124
+
125
+ ## Disclaimer:
126
+
127
+ The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model.
128
+ This model should only be used for research purposes. The original Llama2 license applies.